
�1

How	to	wrap	it	up	–	A	formally	verified	
proposal	for	the	use	of	authenticated	

wrapping	in	PKCS#11	
Alexander	Dax,	Robert	Künnemann,	Sven	Tangermann	and	Michael	Backes

PKCS#11

�2

PKCS#11	
commands

application

Token

vendor-
specific	
library	

hardware	stuff

Pictures:	Evgeny	Karavashkin,	Thalyss	security	and	Yubico

PKCS #11: Cryptographic Token
Interface Standard

An RSA Laboratories Technical Note
Version 1.0
April 28, 1995

RSA Laboratories
100 Marine Parkway
Redwood City, CA 94065 USA
(415) 595-7703
(415) 595-4126 (fax)
E-Mail: rsa-labs@rsa.com

pkcs11-base-v2.40-errata01-os-complete 13 May 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 1 of 147

PKCS #11 Cryptographic Token Interface Base
Specification Version 2.40 Plus Errata 01
OASIS Standard Incorporating Approved Errata 01

13 May 2016
Specification URIs
This version:

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-
os-complete.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-
os-complete.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-
os-complete.pdf

Previous version:
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf

Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.pdf

Technical Committee:
OASIS PKCS 11 TC

Chairs:
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle
Robert Relyea (rrelyea@redhat.com), Red Hat

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (chris@wmpp.com), Individual
Robert Griffin (robert.griffin@emc.com), EMC Corporation
Tim Hudson (tjh@cryptsoft.com), Cryptsoft Pty Ltd

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
x PKCS #11 Cryptographic Token Interface Base Specification Version 2.40 Errata 01. Edited

by Robert Griffin, and Tim Hudson. 13 May 2016. OASIS Approved Errata. http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os.html.

x Normative computer language definition files for PKCS #11 v2.40:
o http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/include/pkcs11-

v2.40/pkcs11.h
o http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/include/pkcs11-

v2.40/pkcs11t.h
o http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/include/pkcs11-

v2.40/pkcs11f.h

PKCS#11	-	logical	attacks

�3

C_Wrap	#1	#2	

application

Token

#1
blob	=	senc(k1,k2)

C_Decrypt	#1	blob	

k2
#2

wrap/unwrap

enc/dec
!

PKCS#11	-	logical	attacks

�4

C_Wrap	#1	#2	

application

Token

#1

#2

blob	=	senc(k1,k2)

C_Unwrap	#1	blob

#3

wrap/unwrap
enc/dec

#3

wrap/unwrap

enc/dec

⇒ need to authenticate attributes!

PKCS#11	-	state	of	key-wrapping

▪ PKCS#11v2.40	introduces	GCM	and	CCM.	The	end..?	
▪ ..	no,	two-pad	attack:	

▪ PKCS#11v3.00	in	drafting	stage:	
▪ Can	we	fix	this	for	GCM	and	CCM?	
▪ Is	SIV	(synthetic	IV)	an	alternative?	
▪ Is	authenticated	key-wrapping	an	improvement?

�5

application

Token
request	two	wrappings	with	same	IV

two	cyphertexts	with	identical	key-stream

Research	goals

�6

Define	secure	policy

Model	symbolically	for

GCM/CCM SIV

Ensure	correctness	of	model Verify

Policy	-	key	ideas

�7

globally unique counters

Token	with	serial	number	n

iv	=	n	||	0

iv	=	n	||	1

authenticated handles

Token
C_GenerateKey	lvl

fresh	#h

C_Wrap	#wh	#h

AE	with	AD:	#h,lvl

≧3

2

management:	wrap/unwrap

usage:	enc/dec,MAC,sig

1
0101	
0110	
1000	
1000

payload

key hierarchy

lvl type permitted	operations

▪ provably	secure:	key-secrecy	and	handle-integrity	
▪ more	functionality	than	other	provable	secure	policies,	where	either	
▪ one	cannot	backup	wrapping	keys	
▪ keys	have	less	attributes	after	unwrapping,	they	"degrade"	

▪ downside:	static	hierarchy

Policy	-	relation	to	PKCS#11	v3.00

▪ PKCS#11v2.40	added	GCM,CCM,	but	insecurely	
▪ v3.00	in	draft:	
▪ C_Encrypt	and	C_Wrap	key	cannot	output	IV	(historically	user	
supplied)	

▪ new	interface	C_EncryptMessage	specifically	for	AEAD	
▪ keep	cryptographic	state	for	multiple	messages	with	possibly	
different	IVs,	additional	data	

▪ application	can	request	internal	IV	generation,	pointer	to	IV	is	
thus	either	input	or	out	parameter	

▪ need	same	convention	for	wrap	(not	even	a	new	interface!)	
▪ FIPS	basically	requires	internal	IV-generation	for	GCM

�8

Symbolic	modelling

(see	paper)

�9

Model:	Authenticated	encryption

▪ IV	generation	is	part	of	protocol,	hence	IV	needs	to	be	exposed	
▪ equational	theory:	

▪ sound	for	GCM,	CCM,	SIV?	
▪ DAE-N	security:																																																					as	long	as	A	does	not	
reuse	IVs	or	query	previous	encryptions.	

▪ GCM	and	CCM	are	AEAD	secure	implies	DAE-N	security.

�10

contrast to previous policies, it is thus not possible to reimport
a key on the same device under different handles — there is
no need to, as all instances of a key are guaranteed to have
the same attributes. Thread-safe implementations should thus
check if the requested handle is present on the device before
unwrapping, relying on locks only to synchronize concurrent
unwrap, key-generation and key-derivation actions.

C. Key-usage
PKCS#11 supports a variety of functions for creating mes-

sage digests, signatures, MACs or random numbers. All of
these operate on payload data, hence, we impose that the keys
must have level 2. We impose no further restrictions beyond
PKCS#11’s standard requirements, e.g., MACs can only be
computed with MACing keys, etc.

For AEAD encryption and decryption specifically, we re-
quire that the authenticated header contains the level l “ 1 (for
payload data). This prohibits encryptions to be confused with
wrappings and thus ‘trojan key’ attacks [13], where unwrap-
ping injects dishonest key material into the store. The same
policy applies to encryption for multi-part data (C EncryptInit,
C EncryptUpdate and C EncryptFinal), however, our model only
covers encryption and decryption for single-part data.

Similar to prior work [18, 22, 10, 20], we will only
model key-usage functions that could possibly interfere with
key-management, i.e., symmetric encryption and decryption,
as indicated by Clulow’s attack. Keys that do not support
encryption can, by the standard, not be used to create or
import wrappings, and hence do not interact with the key-
management. By our policy, asymmetric encryption falls into
the same category. Extending the model to cover non-key-
management operations is straight-forward, but unlikely to
lead to new insights with respect to the security of policies.

D. Limitations
The policy we propose is based on a static key-hierarchy:

This reduces the flexibility when setting up keys. Similarly, a
popular best practice for HSMs is to disallow the modification
of attributes for all users but the SO.

To benefit from handle authentication, existing applications
have to be modified to make use of this feature by validating
the authenticity of the handle provided. In current applications,
objects are identified by a user-specified attribute CKA LABEL.
C FindObjects is used to obtain all handles associated to objects
that have a specified label and these handles are used without
further validation. Instead, the handle should be specified (in
place of the label) to identify keys. Practically, however, this is
not always possible, as handles are implementation-dependent
and cannot always be chosen freely. Furthermore, this requires
a modification of the application. In the following, we discuss
a workaround for both issues. The handle (in the sense of our
policy) could be stored within the attribute CKA LABEL. Handle
authenticity then pertains to this attribute, which can now be
used to identify keys. The advantage is that applications using
the previously described method for identifying keys would
not require changes. The downside is that this label can neither

be set nor modified by the user or SO, but is instead chosen
according to the policy upon object creation.

IV. PRELIMINARIES

Our analysis takes place in an abstract model of cryptogra-
phy with an active, Dolev-Yao adversary. The idea is that all
implementations are considered participants in a protocol. As
the adversary is active and has access to all of them, he can
send arbitrary commands to them and combine their outputs.
This represents a network where all hosts are under adversarial
control. We analyzed this model with Tamarin [43], a protocol
verifier with support for (stateful) security protocols.

Terms and equational theories: Cryptographic messages are
represented by a term algebra over public names PN , fresh
names FN and variables V . Let ⌃ be a signature, i.e., a set
of function symbols, each with an arity. We write f{n when
function symbol f is of arity n, e.g., pair{2 is a function
symbol for pairs. Let Terms be the set of terms built over
⌃, PN , FN and V , e.g., pairpt, t1

q P Terms, which we will
abbreviate xt, t1

y.
Equality is defined by means of an equational theory E,

i.e., a finite set of equations between terms. E induces a
binary relation “E that is closed under application of function
symbols, bijective renaming of names and substitution of
variables by terms.

Example 1. Our model employs the following equational
theory. Unary function symbols fst and snd model projection
on pairs:

fstpxx, yyq “ x sndpxx, yyq “ y

Hence fstpsndpxx, xy, zyyqq “E y. We use true{0 to model
a constant truth value. We model AEAD using senc{4, which
expects a key, an initialisation vector, some authentication data
and a message. The following equations apply:

sdecpk, iv , h, sencpk, iv , h,mqq “ m

sdecSucpk, iv , h, sencpk, iv , h,mqq “ truepq

getHeaderpsencpk, iv , h,mqq “ h

getIVpsencpk, iv , h,mqq “ iv

We use the two-ary function symbol Y
to model multiset

union. Written in infix notation, the following equations for
associativity and commutativity apply:

x Y
#

py Y
zq “ px Y

yq Y
z x Y

y “ py Y
xq

This function symbol is built into Tamarin. We will use it to
model natural numbers. We also include a symbol kdf{2 for
key-derivation, without any equations.

Multiset Rewriting: In the Tamarin protocol prover, the
protocol itself, its state and its behavior are modeled using
a multiset of facts and rewriting rules operating on this set.
The state of the system is a multiset of ground facts G, where a
fact F pt1, ..., tkq of arity k is ground if all k terms t1, ..., tk are
ground. Further, there are predefined fact symbols for special
purposes. The state of the adversary’s knowledge is encoded

≈

dep. lemma description steps seconds

origin Any messages obtained by decryption were encrypted before and all keys imported via unwrapping
were either created on the device or known to the adversary at some point. p!Dpmq@i ùñ
Dj.!Kpmq@j ^ j † iq ^ pImportKpdev , h, k , lq@i ùñ pDj.CreateKph, k , lq@i ^ j †
iq _ Dj1.!Kpkq@j1 ^ j1 † iq.

1597 72

counter mono The device counter is monotonically increasing. DCtrIspd, cq@i ^ DCtrIspd, c1q@j ^ i † j ùñ
Dz.c1 “E z ` c.

1880 77

uniqueness IV No IV is used twice, no matter on which device. IVptq@i ^ IVptq@j ùñ i “ j. 8 16
key usage All keys that are used were created by unwrapping, key-derivation or key-generation.

UseKpd, h, k, lq@i ùñ Dj.StoreKpd, h, k, lq@j ^ j † i.
78 17

key int conf All keys are created on some device (ImportKpd, h, k, lq@i ùñ Dj.CreateKph, k, lq ^ j † i) and
are never known (pCreateKph, k, lq@i ^ Kpkq@jq).

428 45

key level handle Keys always retain the level and handle they were created with. StoreKpd, h, k, lq@i ^
StoreKpd1, h1, k, l1q@j ùñ l “E l1 ^ h “E h1.

170 21

TABLE II: Proof lemmas and their dependencies. We use F@i to denote that an action F appears at position i in a trace. For
brevity, unbound variables are to be read as universally quantified.

by showing a necessary, but not sufficient, condition for the
soundness of the symbolic attacker. As we will see, we have
to impose a condition on the protocol. Luckily, this condition
can be proven to hold using Tamarin.

Formal models rely on an abstract representation of cryp-
tography for efficient tool support. The relationship between
results in this formal model and the complexity-theoretic
model of cryptography was first established by Abadi and
Rogaway [1] under the name of computational soundness.
Computational soundness says that each attack that occurs
with non-negligible probability in the computational model
is represented in the symbolic model. It thus ensures that the
symbolic model and the semantics of the protocol calculus
are adequate models of the cryptographic primitives and the
behaviour of the protocol parties.

Rather than extending the existing body of work with an
additional computational soundness result for a small set
of primitives, we opted to extend the deduction soundness
framework [16] by Cortier and Warinschi. The distinguishing
feature of this framework is that it allows for the composition
of deduction soundness results for different primitives. As
PKCS#11 covers many different cryptographic primitives this
is a very useful feature. The downside is that deduction
soundness does not guarantee computational soundness. The
research question of defining a composable framework for
computational soundness is still open, thus we opted for
extending Böhl et. al.’s deduction soundness result [8] at the
expense of a weaker guarantee. Their result includes public
key encryption, secret key encryption, signatures, MACs,
hashes3 and also public data structures. All these primitives
are supported by PKCS#11, and thus it is very attractive to use
this model and be able to reason about higher-level protocols
building on our PKCS#11 configuration.

We extend Böhl et. al.’s result with deterministic authenti-
cated encryption, so we can reason about schemes like AES-
GCM and AES-CCM as supported by PKCS#11. We can
only sketch the result here, and refer to Appendix C and
Appendix D, as well as the long version [17] for the details.

3PKCS#11 supports a SHA-1-based key-derivation mechanism.

We keep the notation minimal in this section and use Böhl
et. al.’s notation in the appendices.

Cryptographic requirements: We introduce a cryptographic
security notion, DAE-N security, which is a version of DAE
security [40, Definition 1], modified to give the adversary
access to the IV. DAE [40] security is logically equivalent
to AEAD security [38] and formalises the confidentiality and
authenticity for AEAD. Our modification, DAE-N security,
differs from DAE security [40] in that oracles can be called
with arbitrary IVs, as long as they do not repeat.4

Definition 1 (Deterministic Authenticated Encryption with
IVs). Let ⇧ “ pGen,Enc,Decq be an IV-based authenticated
encryption scheme that can handle an associated header. That
means: Given IV space S, associated data 5 space HAD and
message M, the encryption algorithm Enc takes as input a
key k

$
–› Genp1⌘q, an IV n P S, a string of associated data

H , with H P HAD and a message m with m P M. It returns
a cyphertext c “ Encpk, n,H,mq with c P M. Decryption
takes a key k

$
–› Genp1⌘q, an IV n P S, a string of associated

data H , with H P HAD and a cyphertext c with c P M as
input and returns m with m P M Y tKu.

The DAE-N-advantage of an attacker A with access to two
oracles (the first called left-hand, the second called right-
hand) in ⇧ is defined

Advdae´n
⇧ pAq “ |PrrAO

Enc
k p¨,¨,¨q,ODec

k p¨,¨,¨q
“ 1s

´ PrrA$p¨,¨,¨q,Kp¨,¨,¨q
“ 1s|

where k
$

–› Genp1⌘q and OEnc
k

p¨, ¨, ¨q and ODec
k

p¨, ¨, ¨q denote
an encryption oracle and a decryption oracle, respectively.
Further, let $p¨, ¨, ¨q be an algorithm returning a random
bitstring c with c P M and Kp¨, ¨, ¨q an algorithm always
returning K.

4DAE-N security can also be seen as a weaker version of Rogaway’s
notion of misuse-resistant AE (MRAE) security [40, Definition 5]. GCM and
CCM mode provide AEAD security and thus DAE-N security, but not MRAE
security. If used appropriately, SIV mode provides both MRAE and DAE-N
security.

5In the context of our work header, additional data and associated data
are interchangeable terms.

dep. lemma description steps seconds

origin Any messages obtained by decryption were encrypted before and all keys imported via unwrapping
were either created on the device or known to the adversary at some point. p!Dpmq@i ùñ
Dj.!Kpmq@j ^ j † iq ^ pImportKpdev , h, k , lq@i ùñ pDj.CreateKph, k , lq@i ^ j †
iq _ Dj1.!Kpkq@j1 ^ j1 † iq.

1597 72

counter mono The device counter is monotonically increasing. DCtrIspd, cq@i ^ DCtrIspd, c1q@j ^ i † j ùñ
Dz.c1 “E z ` c.

1880 77

uniqueness IV No IV is used twice, no matter on which device. IVptq@i ^ IVptq@j ùñ i “ j. 8 16
key usage All keys that are used were created by unwrapping, key-derivation or key-generation.

UseKpd, h, k, lq@i ùñ Dj.StoreKpd, h, k, lq@j ^ j † i.
78 17

key int conf All keys are created on some device (ImportKpd, h, k, lq@i ùñ Dj.CreateKph, k, lq ^ j † i) and
are never known (pCreateKph, k, lq@i ^ Kpkq@jq).

428 45

key level handle Keys always retain the level and handle they were created with. StoreKpd, h, k, lq@i ^
StoreKpd1, h1, k, l1q@j ùñ l “E l1 ^ h “E h1.

170 21

TABLE II: Proof lemmas and their dependencies. We use F@i to denote that an action F appears at position i in a trace. For
brevity, unbound variables are to be read as universally quantified.

by showing a necessary, but not sufficient, condition for the
soundness of the symbolic attacker. As we will see, we have
to impose a condition on the protocol. Luckily, this condition
can be proven to hold using Tamarin.

Formal models rely on an abstract representation of cryp-
tography for efficient tool support. The relationship between
results in this formal model and the complexity-theoretic
model of cryptography was first established by Abadi and
Rogaway [1] under the name of computational soundness.
Computational soundness says that each attack that occurs
with non-negligible probability in the computational model
is represented in the symbolic model. It thus ensures that the
symbolic model and the semantics of the protocol calculus
are adequate models of the cryptographic primitives and the
behaviour of the protocol parties.

Rather than extending the existing body of work with an
additional computational soundness result for a small set
of primitives, we opted to extend the deduction soundness
framework [16] by Cortier and Warinschi. The distinguishing
feature of this framework is that it allows for the composition
of deduction soundness results for different primitives. As
PKCS#11 covers many different cryptographic primitives this
is a very useful feature. The downside is that deduction
soundness does not guarantee computational soundness. The
research question of defining a composable framework for
computational soundness is still open, thus we opted for
extending Böhl et. al.’s deduction soundness result [8] at the
expense of a weaker guarantee. Their result includes public
key encryption, secret key encryption, signatures, MACs,
hashes3 and also public data structures. All these primitives
are supported by PKCS#11, and thus it is very attractive to use
this model and be able to reason about higher-level protocols
building on our PKCS#11 configuration.

We extend Böhl et. al.’s result with deterministic authenti-
cated encryption, so we can reason about schemes like AES-
GCM and AES-CCM as supported by PKCS#11. We can
only sketch the result here, and refer to Appendix C and
Appendix D, as well as the long version [17] for the details.

3PKCS#11 supports a SHA-1-based key-derivation mechanism.

We keep the notation minimal in this section and use Böhl
et. al.’s notation in the appendices.

Cryptographic requirements: We introduce a cryptographic
security notion, DAE-N security, which is a version of DAE
security [40, Definition 1], modified to give the adversary
access to the IV. DAE [40] security is logically equivalent
to AEAD security [38] and formalises the confidentiality and
authenticity for AEAD. Our modification, DAE-N security,
differs from DAE security [40] in that oracles can be called
with arbitrary IVs, as long as they do not repeat.4

Definition 1 (Deterministic Authenticated Encryption with
IVs). Let ⇧ “ pGen,Enc,Decq be an IV-based authenticated
encryption scheme that can handle an associated header. That
means: Given IV space S, associated data 5 space HAD and
message M, the encryption algorithm Enc takes as input a
key k

$
–› Genp1⌘q, an IV n P S, a string of associated data

H , with H P HAD and a message m with m P M. It returns
a cyphertext c “ Encpk, n,H,mq with c P M. Decryption
takes a key k

$
–› Genp1⌘q, an IV n P S, a string of associated

data H , with H P HAD and a cyphertext c with c P M as
input and returns m with m P M Y tKu.

The DAE-N-advantage of an attacker A with access to two
oracles (the first called left-hand, the second called right-
hand) in ⇧ is defined

Advdae´n
⇧ pAq “ |PrrAO

Enc
k p¨,¨,¨q,ODec

k p¨,¨,¨q
“ 1s

´ PrrA$p¨,¨,¨q,Kp¨,¨,¨q
“ 1s|

where k
$

–› Genp1⌘q and OEnc
k

p¨, ¨, ¨q and ODec
k

p¨, ¨, ¨q denote
an encryption oracle and a decryption oracle, respectively.
Further, let $p¨, ¨, ¨q be an algorithm returning a random
bitstring c with c P M and Kp¨, ¨, ¨q an algorithm always
returning K.

4DAE-N security can also be seen as a weaker version of Rogaway’s
notion of misuse-resistant AE (MRAE) security [40, Definition 5]. GCM and
CCM mode provide AEAD security and thus DAE-N security, but not MRAE
security. If used appropriately, SIV mode provides both MRAE and DAE-N
security.

5In the context of our work header, additional data and associated data
are interchangeable terms.

Deduction	soundness

▪ Intuition:	computational	adversary	can	only	deduce	information	if	the	
symbolic	adversary	can,	too.	

▪ Pro:	composability,	thus	lots	of	PKCS#11	functionality	covered	
▪ Contra:	covers	only	secrecy,	not	integrity.	necessary,	but	not	sufficient		

▪ Approach:	
▪ assume	injective	function	mapping	terms	to	IVs	(e.g.,	concat)	
▪ as	IVs	have	fixed	length,	domain	needs	to	be	finite	
▪ impose	use	of	this	function	at	IV	position	
▪ protocol	condition:	uniqueness	of	terms	given	to	this	function

�11

☐ keys	only	at	key	position	or	
within	wrapping		

☐ no	key-cycles	

☐ each	term	at	IV	position	is	
unique	

Deduction	soundness	-	proof	obligations

�12

✓

✓

.. no dynamic corruption :(

☛ to check

What	about	SIV	mode?

▪ if	we	prepend	IV	to	header,	SIV	is	DAE-N	secure	
▪ but	if	protocol	always	sets	h:=ε,	construction	
vanishes	

▪ we	obtain	model	for	SIV	mode	without	need	
for	deduction	soundness	result	by	writing 
senc(k,<iv,h>,ε,m)	in	place	of  
senc(k,iv,h,m)	

▪ PKCS#11v3.00	draft:	interface	spec	would	be	
fine,	but	SIV	not	part	of	"current	mechanisms"

�13

iv h m

SIV

csiv

Fig. 4: DAE-N/MRAE secure scheme from SIV mode.

Section VI in 284 seconds overall (see Table III for details).
SIV mode was considered for inclusion in PKCS#11 v3.0 [44],
but as of now, it is not supported [35].

IX. RELATED WORK

The search for logical attacks on security APIs goes back to
Longley and Rigby [31] and Bond and Anderson [9]. There is
a huge body of work specifically on PKCS#11 [10, 14, 18], but
there have also been academic proposals for new APIs [28, 15,
27]. While attacks were often a driving factor, a lot of effort
was directed towards finding configurations that are secure,
i.e., that preserve secrecy of keys.

There are three major approaches to the analysis of
PKCS#11 configurations. The first is using program verifi-
cation techniques, but this was not automated and therefore
has largely been discarded [20, 21]. The second approach is
using security type-checking on the implementation, e.g., C-
code [12] or a domain-specific language [2]. This technique
was used to show secrecy of keys against a Dolev-Yao attacker,
but the type-system needs to be modified to reflect new
cryptographic primitives like AEAD encryption. With the third
approach, adoption of new primitives is easier. Here, protocol
verification techniques are used. Essentially, the security to-
ken is the only participant in a protocol, and the API-level
adversary is represented by the network attacker. Early results
were based on model-checking [18] and thus limited to a fixed
number of keys, but under certain assumptions, the soundness
for an unbounded number of keys can be established [22].
The high degree of automation even allows for automated
attack reconstruction [10]. More flexibility can be achieved
by using protocol verification tools in the unbounded model,
as existing results for the soundness of a bounded model do
not apply if the API itself is modified, e.g., by introduction
of stronger cryptographic primitives [29]. To our knowledge,
the two most functional yet secure configurations that were
discovered either have keys that lose functionality on wrapping
and reimporting [10] or do not allow to export wrapping
keys [10, 29].

In contrast to finding configuration which are secure against
logical attacks, cryptographic security proofs for Security
APIs [27, 11] achieve stronger guarantees, but have not been
automated so far. Even though some results retain compatibil-
ity with PKCS#11 [42], their focus is on secure design, not

identification of secure configurations. Furthermore, following
cryptographic necessity, the proposed design forbids that keys
may be used for more than one purpose, e.g., the keys
used for wrapping and encryption need to be separated by
design, in contrast to the policy identified here. While this is
cryptographic good practice, PKCS#11 policies often provide
this functionality to allow for more flexibility in HSM-based
protocols.

The idea of relating symbolic abstractions to cryptographic
security notions goes back to Abadi and Rogaway’s in-
troduction of computational soundness [1]. Various results
established the soundness of symmetric encryption [6], sig-
natures [7], and hash function [23], just to name a few.
Most results exclude key-cycles [6], however, it is possible
to overcome this limitation by strengthening the cryptographic
requirements [3] or the Dolev-Yao attacker [30]. A priori, these
results do not compose, hence Cortier and Warinschi proposed
deduction soundness [16] as a framework that allows for some
amount of composability. Subsequent work in this framework
covered most cryptographic primitives present in PKCS#11,
including MACs, hashes, signatures, symmetric and public key
encryption [8]. To be sure that we handle device-internal nonce
generation correctly, we introduce deterministic authenticated
encryption with associated data to this framework.

X. CONCLUSION

We summarize our suggestions for PKCS#11 version 3.0
and other Security APIs and point out challenges in the
protocol verification approach.

The addition of AEAD schemes to PKCS#11 has shown
great potential for functional and secure key-management poli-
cies. It is vital that HSMs can guarantee network-wide unique
IVs, thus this should be mandated for key-wrapping. The cur-
rent interface does not provide this IV in the function output,
which is making a device-internal generation impossible or at
least unnecessarily complicated. The attributes attached to a
key should be authenticated with the wrapping, and AES keys
should either be usable for wrapping and unwrapping, or for
encryption and decryption. In contrast to previous policies,
the authenticity of a key’s attribute is guaranteed and thus
both encryption and wrapping keys can be wrapped. While we
proposed this policy for PKCS#11, it is also compatible with
the Key Management Interoperability Protocol (KMIP) [26],
an independent standard for key-management that is also
governed by OASIS. KMIP allows for (but does not default to)
authenticating attributes when exporting and importing keys.
It provides support for the GCM and CCM modes of operation
as well as internal IV generation.

Our approach was based on protocol verification, which was
flexible enough to handle the introduction of new primitives,
however, finding the correct equations and protocol conditions
is not easy. Despite the huge body of work in computational
soundness, there was no result that gave an answer right away.
No computational soundness results covers the range of cryp-
tographic primitives supported by PKCS#11. While Böhl’s
deduction soundness result does, thanks to its composability,

Verification

▪ IV	uniqueness	
▪ key-integrity:	all	keys	are	created	on	some	device	
▪ key-secrecy:	no	key	can	ever	leak	
▪ handle-integrity:	keys	retain	the	handle	(and	level)	they	were	created	
with	

▪ total	verification	time:	3mins	(GCM/CCM),	3.5	min	(SIV)	
▪ three	helping	lemmas

�14

Wrap-up	&	Take-away

�15

Define	secure	policy

Model	symbolically	for

GCM/CCM SIV

Ensure	correctness	of	model Verify

Define	secure	policy

Model	symbolically	for

GCM/CCM SIV

Ensure	correctness	of	model Verify

key-wrap enables functionality
that was not possible before

PKCS#11 v3.00 ought to support
internal nonce-generation

need to consider IV generation
inside model

composition result for comp.
soundness would be neat

Thank	you!

alternatively, SIV mode could be
added to supported mechanisms

