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Abstract

Being the most widely used and comprehensive standard for hardware security modules, cryptographic tokens and smart cards,
PKCS#11 has been the subject of academic study for years. PKCS#11 provides a key store that is separate from the application, so
that, ideally, an application never sees a key in the clear. Again and again, researchers have pointed out the need for an import/export
mechanism that ensures the integrity of the permissions associated to a key. With version 2.40, for the first time, the standard included
authenticated deterministic encryption schemes. The interface to this operation is insecure, however, so that an application can get the
key in the clear, subverting the purpose of using a hardware security module.

This work proposes a formal model for the secure use of authenticated deterministic encryption in PKCS#11, including concrete
API changes to allow for secure policies to be implemented. Owing to the authenticated encryption mechanism, the policy we propose
provides more functionality than any policy proposed so far and can be implemented without access to a random number generator. Our
results cover modes of operation that rely on unique initialisation vectors (IVs), like GCM or CCM, but also modes that generate synthetic
IVs. We furthermore provide a proof for the deduction soundness of our modelling of deterministic encryption in Böhl et. al.’s composable
deduction soundness framework.
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1 INTRODUCTION

PKCS#11 is one of the Public-Key Cryptography Standards and was defined by RSA Security in 1994. By now, it is the most
prevalent standard for operating hardware security modules (HSM), but also smart cards and cryptographic libraries. It
defines an API intended to separate usage and storage of cryptographic secrets so that application code can only access
these secrets indirectly, via handles. The hope is that HSMs provide a higher level of security than the multi-purpose
machines running the respective application. This is reasonable: HSMs are designed for security and have less functionality
and therefore a smaller attack surface, making them easier to secure. Consequently, PKCS#11 is used throughout the public-
key infrastructure and the banking network.

In contrast to this stated goal, raising the level of security, many versions and configurations of PKCS#11 allow for
attacks on the logical level [9, 13, 18, 10]. Here, a perfectly valid chain of commands leads to the exposure of sensitive key
material to the application, defeating the purpose of separating the (possibly vulnerable) application from the (supposedly
secure) hardware implementation — and thus defeating their purpose. Formal methods have been used to identify
configurations that are secure [18, 10, 29]. In this context, a configuration or policy refers to a specification of the device’s
behaviour that implements a subset of the standard, e.g., PKCS#11 with the restriction that all keys generated must have
a certain attribute set. In order to be secure, the two most functional secure policies [10, 29] either have to limit the ability
to transfer keys between devices [29] or have some keys degrade in functionality after transfer, i.e., after transfer, they
cannot be used for operations that were permitted prior to transfer [10]. Recent versions of PKCS#11 have adopted various
security extensions (e.g., wrapping/unwrapping templates, ‘wrap-with-trusted’), but none of these improve upon this lack
of functionality. Fundamentally, the problem is that the export mechanism for keys (key wrapping, i.e., encrypting a key
with another key) does not provide a way to authenticate the attributes or the role that a key should be imported with.

Authenticated encryption with associated data (AEAD) provides a solution to this problem [37]. AEAD was not
available in 1994, when PKCS#11 was invented. Academic development started around 2000 [25], standardisation followed
suit in 2004 [19]. With version 2.40, support for two AEAD schemes was finally added to the set of supported algorithms in
PKCS#11, but as Steel pointed out [45], the interface that v2.40 provides allows for a two-time pad attack. The application is
able to set the initialisation vector (IV). If it chooses to use the same IV twice, wrapping can be used to decrypt and obtain
keys in the clear. Figure 1 depicts why this attack works. Both GCM and CCM are based on CTR-mode. If we leave out the
computation of the message authentication tag, it is easy to see that any cyphertext can be decrypted by XORing it with
the keystream that is deterministically generated from the IV. Requesting an encryption with the same IV is essentially a
decryption without the authenticity check.

This attack demonstrates that the mere support of AEAD schemes is not enough, a suitable interface needs to be
provided, too. Unfortunately, this is not a trivial task. As keys can be present on several devices at the same time, each
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Fig. 1: Example on key extraction using CTR-mode. By supplying the same IV twice, the attacker can wrap a key and then
encrypt the resulting wrapping, again using the same IV. This leads to the leakage of the key.

device individually needs to ensure that, globally, an IV is not used twice. Hence in this paper, we tackle the following
questions:

I How can we guarantee global uniqueness even on devices that lack a random number generator (RNG)?
II Using authenticated encryption, is it possible to create a secure PKCS#11 configuration that is strictly more powerful

than those proposed so far?

Contributions
The contributions of this paper can be summarized as follows:

1) We answer (I) and affirm (II) by proposing a secure PKCS#11 configuration that uses authenticated encryption.
2) We formally verify this proposal in the symbolic model and provide custom heuristics that allow for automated proof

generation. These results apply to the previously proposed modes of operation GCM and CCM.
3) We put forward a deduction soundness [8] result, which is a necessary condition for computational soundness. It

justifies the symbolic abstraction of AEAD and is of independent interest for protocol verification. Besides AEAD, it
also supports hash functions, public-key cryptography, digital signatures and MAC.

4) The PKCS#11 technical committee considered SIV mode [41] as an alternative to GCM/CCM as it does not require
an initialisation vector [44]. We derive a construction to obtain an AEAD scheme out of SIV mode (in fact, any
deterministic authenticated encryption scheme). This construction cancels out if we use it in a particular way. With
only slight syntactical modification to our model we can thus derive a similar policy for SIV mode while reusing the
deduction soundness result, model and heuristics.

2 PKCS#11
PKCS#11 provides applications an interface to cryptographic implementations ranging from cryptographic libraries to
smart cards and HSMs. Once an application establishes a session to a device (slot in PKCS#11 parlance), it identifies as a
Security Officer (SO), or a normal user. The SO may initialise a slot and set a PIN for the normal user. Only if this PIN is
set, the normal user can login. As we consider the case where the application or the host computer are malicious, we will
abstract away from this and assume the attacker has complete control over a session.

PKCS#11 exposes so-called objects, e.g., keys and certificates, to the user or attacker. They are referred to indirectly, via
handles. Handles do not reveal any information about the object they refer to. Objects have attributes, some of which are
specific to their type (e.g., public keys of type CKK RSA have a public exponent). Some however, are general for all keys, and
control how they can be used. E.g.:
‚ CKA SENSITIVE marks keys that ought not to be read out in the clear.
‚ CKA DECRYPT marks keys that can be used to decrypt cyphertexts.
‚ CKA WRAP marks wrapping keys: If C WrapKey is given two handles, and the first has CKA WRAP, it uses the key referred

to by the first to encrypt the second. Wrapping is used to export keys. Additional constraints apply to the attributes
associated to the second key, but we omit them for simplicity. To import, the function C UnwrapKey takes a handle and
a wrapping (the cyphertext resulting from C WrapKey), decrypts the latter with the key referred to by the handle, stores
the results and returns a handle to the newly generated object.

Typically, a given implementation supports only some of the functionality specified by PKCS#11, first, because the
standard is extensive and contains many legacy algorithms, but also because the full standard is insecure. Clulow’s attack
provides a nice and concise example [13]:

1) A key is generated and marked CKA SENSITIVE, CKA DECRYPT and CKA WRAP.
2) The key is used to wrap itself, obtaining an encryption of itself.
3) The key is used to decrypt the wrapping from the previous step, obtaining the key in the clear.

This attack and others have prompted vendors to limit the functionality offered by their respective implementa-
tions, which are often dubbed configurations or policies. Some vendors introduced proprietary functionality, e.g., marking
CKA DECRYPT and CKA WRAP as conflicting, but even those were prone to attacks [10]. With version 2.20, wrapping and
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function description rule comment

Object management functions
C CreateObject creates an object (4) only by SO during setup
C GetObjectSize, C GetAttributeValue gather information about ob-

ject
— not useful to adversary

C FindObjects˚ find objects — not useful to adversary
C CopyObject creates a copy of an object — not useful to adversary (in this configuration)
C DestroyObject destroys an object — not useful to adversary
C SetAttributeValue modifies object’s attribute — forbidden by policy

Key-management functions
C GenerateKey generates a secret key (3) generated with level l and universally unique han-

dle h
C DeriveKey derives a key from a base

key
(9) base keys and derived keys must have level 2, key-

derivation needs random salt, universally unique
handle h

C GenerateKeyPair generates a public / private
key pair

— always level 2; asymm. wrapping keys permits
‘Trojan wrapped key attack’, thus not modelled
(only key-usage)

C WrapKey wraps (encrypts) a key (7) wrapping key must have larger level than ar-
gument key; internal IV generation (e.g., like
C EncryptMessage); authenticate level and handle
as additional data

C UnwrapKey unwraps (decrypts) a key
and stores it

(8) level and handle of new key have to match addi-
tional authenticated data

Key-usage functions
C Encrypt encrypts single-part data (5) require l “ 2, internal IV generation
C Decrypt decrypts single-part data (6) require l “ 2
message digest, signature, MAC, RNG etc. — require l “ 2, not modelled (only key-usage)

TABLE 1: PKCS#11 operations for object and key management, and corresponding rules in our modelling (cf. Section 5).

unwrapping templates were introduced to control what keys can be wrapped, and what attributes objects created via
unwrapping can obtain. While this mechanism provides more flexibility, it does not improve the expressiveness of policies
– these templates can essentially be hard-coded in the device. In effect, two secure configurations were discovered that are
incomparable to each other, but more or equally functional to the others found so far [10, 29].

The fundamental problem is that a wrapping does not contain authenticated information about the role of the key prior
to the wrapping, i.e., its intended use. Hence, if it is possible to wrap two keys that have different roles, it is not clear
which attributes a (re-)imported key should obtain upon unwrapping — it could originate from a key with either role. For
instance, the first of the two most functional policies [10] allows for two different roles to be wrapped, but to be secure,
the attributes obtained upon unwrapping provide less capabilities than either role — the keys ‘degrade’. The second of
them [29] allows only keys of a single role specific role to be wrapped.

Before OASIS took over standardisation from RSA Security in 2012, RSA drafted, but never published, version 2.30.
Based on this draft, OASIS published version 2.40 in 2015, introducing support for AEAD schemes. AEAD schemes can be
used for wrapping, which finally provides a way of authenticating a key’s attributes upon wrapping. Unfortunately, the
API requires the user to set the initialization vector, which allows for a simple attack where some vector is used twice [45].
The security of the schemes supported (AES-CCM and AES-GCM) relies on the uniqueness of the initialisation vector,
hence the upcoming standard 3.00 is planned to support device-internal nonce generation for encryption/decryption.

The present work was motivated by the drafting of the standard. We announced our results on the OASIS PKCS#11
mailing list and stressed the need to support device-internal nonce generation for wrapping and encryption [17]. Assuming
that support for this is present in v3.00, our policy provides a template for the secure use of PKCS#11. The current version
at time of writing is version 2.40 with errata 01 [33]. The most recent proposal for PKCS#11 v3.00 is working draft 5 [34].

3 POLICY

Our policy implements three central ideas: a key-hierarchy, globally unique counters and authentication of handles.
Key-hierarchy: keys are created with a given level, i.e., a natural number, and may only be used to wrap and unwrap

keys of a lower level. If we extend this to payload data, we can assign level 1 to payload and level 2 to encryption keys
that cannot wrap. Ergo, wrapping keys must have level 3 or higher. When wrapping a key, we authenticate the level of
the enclosed key with the encryption. Upon unwrapping, this level is restored. To be consistent with that, decryption only
succeeds if the cyphertext is authentic w.r.t. level 1. This already prevents Clulow’s attack, as wrappings will never be
decrypted, since whatever level the wrapping key was created with must be larger or equal to three.

Globally unique counters: The deduction soundness result that we will present in Section 7 holds only for protocols that
guarantee that AEADs are created with a unique initialisation vector. This is necessary, as otherwise, for counter-mode
based schemes like GCM and CCM, key-wrapping can immediately be used to decrypt. The simplest way to ensure this
is to choose the IV randomly, however, many low-cost devices do not have a random number generator. We thus describe
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a secure low-cost alternative that is slightly more involved. We require each device to have a unique device identifier at
initialisation time, e.g., a serial number with a unique vendor id. For every encryption, a running counter is increased,
so that the combination of this unique public value and the running counter is unique in the network. Hence, even if a
key is shared between two devices, the initialisation vector remains unique. Practically, this combination can be a simple
concatenation: if the serial number and the counter have 64 bit, they match the blocksize of AES. For an HSM that can
run 10M encryptions per second, it would take about 60’000 years to repeat a counter. In terms of the soundness of our
deduction rules, any other way of combining those is sound, as long as it provides an injective mapping into the set of
initialisation vectors (or is indistinguishable from one).

Authentication of handles: The third novelty to our policy is the authentication of handles. Usually, handles are assigned
through a running counter or are simply the memory address where the key is physically stored. If a key is exported to
another device, it most likely receives a new handle. Instead, we chose a unique handle at key-generation time, and ensure
that, no matter on which device, this handle always resolves to the same key. We call this property handle integrity.

We discus the relevant parts of PKCS#11 in the follow-up. Table 1 gives an overview, see [34, Table 30] for the full list.

3.1 Object-management
The main security goal is to keep keys secret from the possibly malicious host. Hence, for the operation of the device, we
disallow direct key imports via C CreateObject. Nevertheless, in order to import keys via C UnwrapKey, at least one key must
be shared initially. A common practice is to have the security officer (SO) set up shared keys using C CreateObject. Thus this
function may only be used by the SO, which we assume happens only during setup or in an otherwise safe environment
and only with trusted PKCS#11 tokens, i.e., tokens implementing our policy by vendors that guarantee the uniqueness of
their unique device identifiers.

As the key-hierarchy is static, so are the attributes. We thus disable the function C SetAttributeValue altogether.
We allow the user to inspect the device using functions like C GetObjectSize and C FindObjects and its siblings. As the

adversary has full control, this information is redundant to him and w.l.o.g., we omit them from our model. Similar for
C DestroyObject. As our model assumed no limit on space for storing keys, any attack using it can be transformed into an
attack that does not delete objects.

3.2 Key-management
In our policy, normal users can create new objects via C GenerateKey, C GenerateKeyPair, C DeriveKey or C UnwrapKey. C GenerateKey

and C GenerateKeyPair create a new symmetric or asymmetric key, C DeriveKey derives a new key from an existing one, and
C UnwrapKey decrypts a wrapping, i.e., an AEAD that was output by C WrapKey, and imports its content. We thus consider
these four functions plus C WrapKey the key-management core of PKCS#11.

C GenerateKey and C GenerateKeyPair: Keys are generated and then stored with a level and a universally unique handle. The
level is provided by the user by setting the attribute parameter CK ATTRIBUTE PTR. The handle can be chosen randomly from
a sufficiently large space or using any another technique/mechanism for creating universally unique identifier [36]. This
ensures handle integrity without central coordination. The details of the precise encoding from levels to CK ATTRIBUTE PTR

are not important, but the token has to enforce that the level is correctly encoded. In general, the level can be represented
using a vendor-specific PKCS#11 attribute that encodes this number in an integer. If there is a suitable upper bound, these
levels can also be encoded in standard PKCS#11 attributes, e.g., if the bound is 4, the values of CKA WRAP and CKA ENCRYPT

can be used to encode a binary representation of each level between 1 and 4. As wrapping with asymmetric keys is
fundamentally flawed (asymmetric wrapping keys can be used to inject keys whose values are known to the attacker [13]),
asymmetric key generation (C GenerateKeyPair) is restricted to keys of level 2. We hence consider asymmetric encryption
keys only for key-usage.

C DeriveKey creates a new key object from a base key. As there is no AEAD scheme in the PKCS#11v2.40 cryptographic
mechanism specification that can be used for both wrap/unwrap and key derivation [35, Section 2.11], any key that may
be used for key-derivation has level 2 and may only be used to derive keys of level 2. Similar to C GenerateKey, a universally
unique handle is created.

C WrapKey creates an authenticated encryption of a key and includes its level and handle as additional authenticated
data. This makes sure that keys are reimported with precisely the same attributes. This is not possible with PKCS#11
prior to v2.40, due to the lack of support for AEAD. Note, however, that, even for v2.40, this requires a modification to
its specification or a new interface: PKCS#11 v2.40 specifies the initialisation vector to be set from the outside, leading to
the aforementioned two-time pad attack. While an implementation may very well ignore the supplied IV and choose it
internally, by specification, the function output contains only the cyphertext, not the IV. This is problematic, as it means
that the interface cannot be easily changed to communicate the internally generated IV without breaking backwards
compatibility. For encryption, the current PKCS#11 v3.00 draft solves this by introducing a new interface for encryption,
C EncryptMessage, specifically to support internal nonce-generation for AEAD schemes. C EncryptMessage has an additional
parameter that controls whether the pointer to the IV is used as an input or an output. In the current draft, there is no
equivalent for key-wrapping, although this would not even require a new interface, but instead just a provision that the
(mechanism-specific) IV parameter may be requested to be used for output instead of a new interface. We encourage the
inclusion of such a provision in the base specification and making internal IV generation the default for authenticated
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wrapping. Considering the adaptation of C EncryptMessage, we deem this a realistic proposal. Moreover, internal nonce-
generation follows from the FIPS requirement on GCM: ‘The probability that the authenticated encryption function ever
[across all instances] will be invoked with the same IV and the same key on two (or more) distinct sets of input data shall
be no greater than 2´32.’ [19, 4]

C UnwrapKey decrypts a wrapping, verifies its authenticity and stores the decryption as a new key. It takes the following
parameters: the handle of the wrapping key, an attribute template specifying the attributes that the newly generated
object should obtain, and a handle for this newly generated object. The initialisation vector is supplied as the mechanism
parameter. Our policy is to reject any handle and any template that do not match the authenticated handle and level.1 In
contrast to previous policies, it is thus not possible to reimport a key on the same device under different handles — there is
no need to, as all instances of a key are guaranteed to have the same attributes. Thread-safe implementations should thus
check if the requested handle is present on the device before unwrapping, relying on locks only to synchronize concurrent
unwrap, key-generation and key-derivation actions.

3.3 Key-usage
PKCS#11 supports a variety of functions for creating message digests, signatures, MACs or random numbers. All of these
operate on payload data, hence, we impose that the keys must have level 2. We impose no further restrictions beyond
PKCS#11’s standard requirements, e.g., MACs can only be computed with MACing keys, etc.

For AEAD encryption and decryption specifically, we require that the authenticated header contains the level l “ 1
(for payload data). This prohibits encryptions to be confused with wrappings and thus ‘trojan key’ attacks [13], where
unwrapping injects dishonest key material into the store. The same policy applies to encryption for multi-part data
(C EncryptInit, C EncryptUpdate and C EncryptFinal), however, our model only covers encryption and decryption for single-
part data.

Similar to prior work [18, 22, 10, 20], we will only model key-usage functions that could possibly interfere with
key-management, i.e., symmetric encryption and decryption, as indicated by Clulow’s attack. Keys that do not support
encryption can, by the standard, not be used to create or import wrappings, and hence do not interact with the key-
management. By our policy, asymmetric encryption falls into the same category. Extending the model to cover non-key-
management operations is straight-forward, but unlikely to lead to new insights with respect to the security of policies.

3.4 Limitations
The policy we propose is based on a static key-hierarchy: This reduces the flexibility when setting up keys. Similarly, a
popular best practice for HSMs is to disallow the modification of attributes for all users but the SO.

To benefit from handle authentication, existing applications have to be modified to make use of this feature by validating
the authenticity of the handle provided. In current applications, objects are identified by a user-specified attribute CKA LABEL.
C FindObjects is used to obtain all handles associated to objects that have a specified label and these handles are used without
further validation. Instead, the handle should be specified (in place of the label) to identify keys. Practically, however, this
is not always possible, as handles are implementation-dependent and cannot always be chosen freely. Furthermore, this
requires a modification of the application. In the following, we discuss a workaround for both issues. The handle (in the
sense of our policy) could be stored within the attribute CKA LABEL. Handle authenticity then pertains to this attribute, which
can now be used to identify keys. The advantage is that applications using the previously described method for identifying
keys would not require changes. The downside is that this label can neither be set nor modified by the user or SO, but is
instead chosen according to the policy upon object creation.

4 PRELIMINARIES

Our analysis takes place in an abstract model of cryptography with an active, Dolev-Yao adversary. The idea is that all
implementations are considered participants in a protocol. As the adversary is active and has access to all of them, he
can send arbitrary commands to them and combine their outputs. This represents a network where all hosts are under
adversarial control. We analyzed this model with Tamarin [43], a protocol verifier with support for (stateful) security
protocols.

Terms and equational theories
Cryptographic messages are represented by a term algebra over public names PN , fresh names FN and variables V . Let Σ
be a signature, i.e., a set of function symbols, each with an arity. We write f{n when function symbol f is of arity n, e.g.,
pair{2 is a function symbol for pairs. Let Terms be the set of terms built over Σ, PN , FN and V , e.g., pairpt, t1q P Terms,
which we will abbreviate xt, t1y.

Equality is defined by means of an equational theory E, i.e., a finite set of equations between terms. E induces a binary
relation “E that is closed under application of function symbols, bijective renaming of names and substitution of variables
by terms.

1. In addition, we recommend checking that the authenticated level is smaller than the wrapping key’s level to provide resilience against key
compromise. Our model, however, does not consider key compromise.
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Example 1. Our model employs the following equational theory. Unary function symbols fst and snd model projection on pairs:

fstpxx, yyq “ x sndpxx, yyq “ y

Hence fstpsndpxx, xy, zyyqq “E y. We use true{0 to model a constant truth value. We model AEAD using senc{4, which expects a
key, an initialisation vector, some authentication data and a message. The following equations apply:

sdecpk, iv , h, sencpk, iv , h,mqq “ m

sdecSucpk, iv , h, sencpk, iv , h,mqq “ truepq
getHeaderpsencpk, iv , h,mqq “ h

getIVpsencpk, iv , h,mqq “ iv

We use the two-ary function symbol Y# to model multiset union. Written in infix notation, the following equations for associativity
and commutativity apply:

xY# py Y# zq “ pxY# yq Y# z xY# y “ py Y# xq

This function symbol is built into Tamarin. We will use it to model natural numbers. We also include a symbol kdf{2 for key-derivation,
without any equations.

Multiset Rewriting
In the Tamarin protocol prover, the protocol itself, its state and its behavior are modeled using a multiset of facts and
rewriting rules operating on this set. The state of the system is a multiset of ground facts G, where a fact F pt1, ..., tkq of
arity k is ground if all k terms t1, ..., tk are ground. Further, there are predefined fact symbols for special purposes. The
state of the adversary’s knowledge is encoded using the fact symbol !K. Freshness information is denoted with the fact
symbol Fr and messages on the network are represented by In and Out. Multiset rewriting rules are denoted by l ŕ a sÑ r,
where l is the premise, r is the conclusion and a labels so-called actions. Linear facts used in the premise are consumed
by the transition rule. An exclamation mark in front of a fact symbol indicates that it is persistent and can be consumed
arbitrarily often. For example, freshness Fr is a linear fact, whereas adversarial knowledge !K is a permanent fact.

Example 2. To express, e.g., a key hierarchy or a counter, we need to identify natural numbers. We can model them using Tamarin’s
built-in support for multisets: a multiset with n elements 1 P PN represents n. The following two rules ensure that terms t for which
a fact !Natptq or action IsNatptq exists are always multisets consisting only of 1 P PN .

ŕ IsNatp1q sÑ!Natp1q (1)

!Natpnq ŕ IsNatpnY# 1q sÑ!NatpnY# 1q (2)

Intuitively, we say that a rewriting step is possible if all facts in l are in the current state S. In the resulting state, all
linear facts from l are removed and all facts in r are added. We will formulate this intuition in the following, but need
some preliminaries first. We use lfacts and pfacts to denote the linear, respectively, the permanent facts in a set, set to turn
a multiset into a set and mset to turn a set into a multiset. We mark the multiset equivalents of the subset relation, set
difference and set union with a # superscript, i.e. Ă#, z# and Y#.

We define a labeled transition relation ÑMĂ G# ˆ P pGq ˆG#, where G# denotes a multiset of ground facts and M
denotes a set of ground instantiations of multiset rules, as follows:

l ŕ a sÑ r PM lfactsplq Ă# S pfactsplq Ă setpSq

S
setpaq
ÝÝÝÝÑM pSz#lfactsplqq Y# t r u#

Consider, e.g., the following application of (2):

t !Natp1q u#
IsNatp1Y#1q
ÝÝÝÝÝÝÝÑ t !Natp1q, !Natp1Y# 1q u#.

Using the labelled transition relation, we can define executions of some model M as a set of traces:

tpA1, . . . , Anq | DS1, . . . , Sn P G#.H
A1
ÑM . . .

An
ÑM Sn

^ @i ‰ j. @x. Si`1z
#Si “ tFrpxqu

ùñ Sj`1z
#Sj ‰ tFrpxquu

Combining the previous transition with an application (1), we obtain the trace pIsNatp1q, IsNatp1 Y# 1qq. The side
condition ensures that fresh variables are instantiated with unique fresh names.

Tamarin combines a user-defined set of rules describing the protocol itself with the builtin rules for message deduction
MD depicted in Figure 2. They represent a standard Dolev-Yao attacker who obtains knowledge (!Kq by eavesdropping on
the network (Out), creating fresh names, or by using public values. This knowledge can be combined by applying function
symbols f{k. Known terms can be sent to the network.
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Outpxq ŕ sÑ !Kpxq
Frpx : freshq ŕ sÑ !Kpx : freshq

ŕ sÑ !Kpx : pubq
!Kpx1q, . . . , !Kpxkq ŕ sÑ !Kpfpx1, . . . , xkqq

!Kpxq ŕ Kpxq sÑ Inpxq

Fig. 2: The set of rules MD.

5 FORMAL MODELLING

We present the multiset rewrite rules used to formalise the policy described in Section 3 and Table 1.

Devices
At any time, a new device can be introduced to the network. This device has a fresh identifier dev , and its device counter
is initialised to 1 P PN , representing the natural number 1. Previous work [10, 18, 29] abstracted all PKCS#11 devices in
the network with a single store. As we want to tackle the problem of locally generating network-wide unique IVs, we need
to capture the absence of a secure channel between these devices, and thus model them individually.

Frpdevq, !Natp1q ŕ DCtrIspdev ,1 11q sÑ
!Dpdevq,DCtrpdev , 1q

Each device (!Dpdevq), obtains a fresh identifier (Frpdevq), which links it to the initial counter value (DCtrpdev , 1q). The
action DCtrIs is used in the lemma counter mono (cf. Section 6) to refer to this counter and show each counter is monotonically
increasing.

Key-generation
When a new key is created, it is stored along with its level, a freshly chosen handle and a natural number l on the store of
dev , represented by the fact !Storepdev , h, k , lq. The rules from Example 2 are part of our model and ensure that l represents
a natural number. The handle and the level of the key are handed out to the adversary (Outpxh, lyq).

!Dpdevq, !Natplq,Frpkq,Frphq
ŕ CreateKph, k , lq,StoreKpdev , h, k , lq sÑ

!Storepdev , h, k , lq,Outpxh, lyq (3)

The action CreateK marks the creation of a key along with its level and attribute. It is referenced by lemma key int conf to
say that keys imported via unwrapping were honestly generated at an earlier point (i.e., no trojan keys can exist). StoreK,
by contrast, marks that a key is added to the store, which includes import via unwrap and key-derivation.

A second rule additionally contains !Dpdev 1q in the premise and !Storepdev 1, h, k , lq in the conclusion and is used to
model a trusted set-up phase where a common key is established on two devices.

¨ ¨ ¨ , !Dpdev 1q ŕ ¨ ¨ ¨ ,StoreKpdev 1, h, k , lq sÑ

¨ ¨ ¨ , !Storepdev 1, h, k , lq (4)

Note that devices only need to produce fresh names during key-generation. Hence, w.l.o.g., a device without RNG is
represented by an adversary that chooses to never employ an instance of the key-generation rule where dev is instantiated
to this device. Devices without RNG exist and are useful: lightweight authentication tokens can, e.g., obtain a master key
via a trusted set-up, and subsequently import keys via unwrapping.

Encryption and decryption of payload data
Encryption (C Encrypt) expects some payload m and encrypts it with the authenticated header affirming the level as 1
(payload data) and, for uniformity, an empty handle value ε P PN . For simplicity, the handle h is not required as an
explicit input – the adversary chooses the appropriate instantiation of this handle anyway. We set the initialisation vector
to xdev , ctry, which, as we will show, ensures the network-wide uniqueness of the IV.

!Natpctr Y# 1q, !Dpdevq, !Storepdev , h, k , lq,
DCtrpdev , ctrq, Inpmq ŕ UseKpdev , h, k , lq,

DCtrIspdev , ctr Y# 1q, IVpxdev , ctryq sÑ

DCtrpdev , ctr Y# 1q,Outpsencpk , xdev , ctry, x1, εy,mq (5)

As before, DCtrIs records the new counter value (DCtrpdev , ctr Y# 1q) to ensure monotonicity. IV marks the use of the IV.
The lemma uniqueness IV will ensure that no two instances of this action have the same value, which is a cryptographic
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requirement for AEAD schemes. Finally, UseK marks the use of a key with the handle and level that were assumed. Lemma
key usage will ensure that any key used was created or imported with exactly this handle and level.

Decryption (C Decrypt) verifies that the authenticated tag is x1, εy. Let iv “ getIVpcq, t “ getHeaderpcq and m “

sdecpk , iv , t, cq in

!Dpdevq, !Storepdev , h, k , lq, Inpcq
ŕ UseKpdev , h, k , lq,Decryptpmq,

IsTruepsdecSucpk , iv , t, cqq,Eqpt, x1, εyq sÑ
Outpmq (6)

Again, UseK tracks the use of the key. Decryptpmqwill be used in the lemma origin to state that any knowledge obtained
by the output message m was known by the adversary before invoking decryption.

We use the action IsTrue to check whether the decryption was successful: every lemma ϕ presented in the next section
is verified w.r.t. the subset of traces for which the condition

α ¨̈“ p@ a, i.IsTruepaq@i ùñ a “E truepqq2

holds true. This is achieved by showing α ùñ ϕ on the entire set of traces. For every trace where the term sdecSucpk , iv , t,
cq is unequal to truepq (modulo E), the property is trivially true and thus the property is valid iff α holds for all traces that
adhere to the restriction. Tamarin conveniently allows specifying several so-called restrictions α, which apply to all lemmas
in this way.

Key-wrapping
Wrapping proceeds in the same vein. A key on the device (!Storepdev , hw, kw, lwq) can be used to encrypt another key
(!Storepdev , he, ke, leq). Again, let iv “ xdev , ctry.

!Natpctr Y# 1q, !Dpdevq, !Storepdev , hw, kw, lwq,
!Storepdev , he, ke, leq,DCtrpdev , ctrq

ŕ UseKpdev , hw, kw, lwq,DCtrIspdev , ctr Y# 1q,

IVpivq, Ltpel, wlq sÑ

DCtrpdev , ctr Y# 1q,Outpsencpkw, iv , xle, hey, keqq (7)

The output sencpkw, iv , xle, hey, keq constitutes the wrapping of ke under kw with additional authenticated data xle, hey
for the previous handle and level of ke on device dev . Again, UseK, DCtrIs and IV track the state of keys, counters and
the IV iv “ xdev , ctry. Similar to IsTrue, the action Lt ensures the wrapped key has a lower level than the wrapping key
by imposing another restriction on traces: for every action Ltpa, bq, there is a non-empty a1 such that a Y# a1 “ b, i.e., a
represents a (strictly) smaller number than b. This avoids key-cycles.

Unwrapping
To unwrap (C UnwrapKey), a device is called with a handle to a wrapping key (i.e., a key of level ě 3) and an authenticated
encryption c. It decrypts c, and stores the resulting key along with the authenticated handle and level for future use
(!Storepdev , he, ke, leq). Let iv “ getIVpcq, t “ xle, hey “ getHeaderpcq and ke “ sdecpk , iv , t, cq in

!Natpleq, !Dpdevq, !Storepdev , h, k , lq, Inpcq
ŕ UseKpdev , h, k , lq, ImportKpdev , he, ke, leq,Neqple, 1q,

StoreKpdev , he, ke, leq, IsTruepsdecSucpk , iv , t, cqq sÑ
!Storepdev , he, ke, leq (8)

As before, UseK marks the use of the wrapping key and StoreK their addition to the store. IsTrue ensures that
sdecSucpk , iv , t, cq “E truepq. ImportK marks that the key contained in the wrapping has been imported, and not created.
It will be referred to by lemma key int conf (cf. Section 6) to say that any key imported by wrapping was once created on
some device.

By our deduction soundness result, the cyphertext c in our model contains the authenticated header and IV in the clear.
Hence it represents the ‘raw’ cyphertext, as well as the other parameters supplied to C Unwrap.

2. F@i denotes that action F appears at position i in the trace.
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Key-derivation
Key-derivation (C DeriveKey) is restricted to key-usage keys, i.e., keys of level 2. Recall that we omitted pure key-usage
like MACs from the model, except for AEAD encryption and decryption. We therefore model key-derivation with AEAD
base keys to represent derivation from other keys of level 2. The Fr-facts in the premise model the generation of a globally
unique handle, as well as a random salt r, which is used to derive the new key as kdfpk , rq. Let two “ 1Y# 1 in

!Dpdevq, !Storepdev , h, k , twoq,Frprq,Frph 1q
ŕ UseKpdev , h, k , twoq,StoreKpdev , h 1, kdfpk , rq, twoq,
CreateKph 1, kdfpk , rq, twoq sÑ
!Storepdev , h 1, kdfpk , rq, twoq (9)

As before, UseK marks the use of the key k . Similar to key-generation, this rule is marked with StoreK (as the derived
key is added to the store of dev ), as well as CreateK (as the key kdfpk, rq is created).

6 RESULTS FOR AES-GCM/CCM

dep. lemma description steps seconds

origin Any messages obtained by decryption were encrypted before and all keys imported via
unwrapping were either created on the device or known to the adversary at some point.
p!Dpmq@i ùñ Dj.!Kpmq@j^j ă iq^pImportKpdev , h, k , lq@i ùñ pDj.CreateKph, k , lq@i^
j ă iq _ Dj1.!Kpkq@j1 ^ j1 ă iq.

1597 72

counter mono The device counter is monotonically increasing. DCtrIspd, cq@i^DCtrIspd, c1q@j^ i ă j ùñ
Dz.c1 “E z ` c.

1880 77

uniqueness IV No IV is used twice, no matter on which device. IVptq@i^ IVptq@j ùñ i “ j. 8 16
key usage All keys that are used were created by unwrapping, key-derivation or key-generation.

UseKpd, h, k, lq@i ùñ Dj.StoreKpd, h, k, lq@j ^ j ă i.
78 17

key int conf All keys are created on some device (ImportKpd, h, k, lq@i ùñ Dj.CreateKph, k, lq ^ j ă i)
and are never known ( pCreateKph, k, lq@i^Kpkq@jq).

428 45

key level handle Keys always retain the level and handle they were created with. StoreKpd, h, k, lq@i ^
StoreKpd1, h1, k, l1q@j ùñ l “E l1 ^ h “E h1.

170 21

TABLE 2: Proof lemmas and their dependencies. We use F@i to denote that an action F appears at position i in a trace.
For brevity, unbound variables are to be read as universally quantified.

The stated purpose of PKCS#11 is to separate secret data from untrusted code accessing the interface. Hence our main
goal is to ensure that no key generated on the device can leak to the adversary. Nevertheless, there are two additional
integrity properties that we consider important, but that have been largely overlooked by prior work. First, the integrity
of the keys themselves: each key on the device was created on some honest device; it is not possible to import trojan keys.
Second, the integrity of the mapping from handles to keys: each key, on whichever device it may be placed, will always
have the same level and the same handle. The latter property is a new feature of our policy that is meant to ensure that
no attacker can confuse an honest application into using an insecure or deprecated key by altering the assignment from
handles to keys.

We verify these properties using two helping lemmas (see Table 2). These lemmas were stated manually, but proven
automatically. The first one (origin), establishes that any knowledge obtained through decryption was available beforehand,
and that all keys imported via wrapping were either originally created on some device, or was otherwise known by the
adversary before. The first conjunct of origin prunes cases where decryption is used to derive a term of arbitrary form
from an encryption. Intuitively, when Tamarin’s backward search algorithm is trying to prove that a certain term cannot
be deduced, e.g., a key stored on the device, it considers all rules that have a matching Out-fact. The rule for decryption (6)
by itself could output any term t, as long as c “ sencpk, iv, x1, εy, tq is input, and thus known to the adversary. This c itself
could come from rule (6), which, without origin, creates a loop. This conjunct establishes that the content of the cyphertext
must have been known prior to using the decryption rule. As knowledge facts are permanent, the application of rule (6)
is superfluous if !Kptq is already present, and thus this step can be pruned. The second conjunct can be used to either
establish the freshness of keys (both rules containing CreateKpkq have the premise Frpkq), or to pinpoint an earlier leak of
a key, which helps in the inductive steps of many of the follow-up lemmas.

The second helping lemma (counter monotonicity) establishes that on each device, the counter is monotonically increas-
ing. Proving it is just a matter of considering all pairs of rules where the action DCtrIs occurs, but when applied, it readily
entails the relationship between any two counter-values once their temporal relation can be established.

With these lemmas in place, we show: First (key usage), that all keys that are used by an honest token were put in the
store either by unwrapping (8), by key-derivation (9) or by key-generation (3); and that the attribute and handle remain
unchanged. Second (key int conf, first conjunct), if they were created by unwrapping, they were previously generated by
key-generation or key-derivation with the same attribute and handle, but possibly on a different device. Together, this
means that all keys that are used were honestly generated, and that throughout their use, they are associated with the same
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attributes and handle. Third (key int conf, second conjunct), all keys are confidential: it is not possible for any key that
was created on the device to be deduced by the adversary. In Tamarin, this is expressed by referring to the action !K in the
message deduction rule for adversarial output (see Figure 2): the adversary cannot output a key created on some device.
Fourth, whenever a key is added to the store on any device, it is associated with the same level and handle.

Finally, the deduction soundness result in the next section comes with a proof obligation for the protocol: whenever
a term sencpk, iv , h,mq is output, the tuple pk, iv , hq needs to be unique. Lemma uniqueness IV establishes the stronger
property that iv itself is distinct within all such terms.

All these lemmas can be shown automatically using a custom heuristic that prioritizes goals relevant to IV generation.
We report the number of proof steps and the verification time per lemma in Table 2. Both were measured on a 3.1 GHz Intel
Core i7 with 16GB RAM. A full proof took about four minutes. As we present a new policy of PKCS#11 with new features,
we cannot compare the verification time with previous efforts. The closest work to ours also used Tamarin and reported a
runtime of half an hour on a dedicated computation server [29]. The structure of the proof, in particular the choice of the
helping lemmas and their order, follows the structure in this paper, albeit adapted to our model. We thus feel confident
that our helping lemmas and heuristics can be reused for other policies that guarantee key and attribute integrity.

7 JUSTIFYING THE SYMBOLIC ABSTRACTION

Symbolic models in the literature that include symmetric encryption usually imply authenticity of the cyphertext. In
the cryptographic setting, this is called non-malleability. They do, however, not account for the choice of the IV. This is
reasonable, as in most cases, this choice is part of the encryption scheme itself, and not a protocol task. For the configuration
we discussed in the last section, however, IV generation is part of the protocol itself and hence cannot be abstracted away.

We thus provide some justification for the equational theory we use to model AEAD, which was introduced in
Example 1, by showing a necessary, but not sufficient, condition for the soundness of the symbolic attacker. As we will see,
we have to impose a condition on the protocol. Luckily, this condition can be proven to hold using Tamarin.

Formal models rely on an abstract representation of cryptography for efficient tool support. The relationship between
results in this formal model and the complexity-theoretic model of cryptography was first established by Abadi and
Rogaway [1] under the name of computational soundness. Computational soundness says that each attack that occurs with
non-negligible probability in the computational model is represented in the symbolic model. It thus ensures that the
symbolic model and the semantics of the protocol calculus are adequate models of the cryptographic primitives and the
behaviour of the protocol parties.

Rather than extending the existing body of work with an additional computational soundness result for a small set
of primitives, we opted to extend the deduction soundness framework [16] by Cortier and Warinschi. The distinguishing
feature of this framework is that it allows for the composition of deduction soundness results for different primitives. As
PKCS#11 covers many different cryptographic primitives this is a very useful feature. The downside is that deduction
soundness does not guarantee computational soundness. The research question of defining a composable framework for
computational soundness is still open, thus we opted for extending Böhl et. al.’s deduction soundness result [8] at the
expense of a weaker guarantee. Their result includes public key encryption, secret key encryption, signatures, MACs,
hashes3 and also public data structures. All these primitives are supported by PKCS#11, and thus it is very attractive to
use this model and be able to reason about higher-level protocols building on our PKCS#11 configuration.

We extend Böhl et. al.’s result with deterministic authenticated encryption, so we can reason about schemes like AES-
GCM and AES-CCM as supported by PKCS#11. We can only sketch the result here, and refer to Appendix D to Appendix G
for the details. We keep the notation minimal in this section and use Böhl et. al.’s notation in the appendices.

Cryptographic requirements
We introduce a cryptographic security notion, DAE-N security, which is a version of DAE security [40, Definition 1],
modified to give the adversary access to the IV. DAE [40] security is logically equivalent to AEAD security [38] and
formalises the confidentiality and authenticity for AEAD. Our modification, DAE-N security, differs from DAE security [40]
in that oracles can be called with arbitrary IVs, as long as they do not repeat.4

Definition 1 (Deterministic Authenticated Encryption with IVs). Let Π “ pGen,Enc,Decq be an IV-based authenticated
encryption scheme that can handle an associated header. That means: Given IV space S, associated data 5 space HAD and message M,
the encryption algorithm Enc takes as input a key k $

ÐÝ Genp1ηq, an IV n P S, a string of associated data H , with H P HAD and
a message m with m PM. It returns a cyphertext c “ Encpk, n,H,mq with c PM. Decryption takes a key k $

ÐÝ Genp1ηq, an IV
n P S, a string of associated data H , with H P HAD and a cyphertext c with c PM as input and returns m with m PMY tKu.

3. PKCS#11 supports a SHA-1-based key-derivation mechanism.
4. DAE-N security can also be seen as a weaker version of Rogaway’s notion of misuse-resistant AE (MRAE) security [40, Definition 5]. GCM

and CCM mode provide AEAD security and thus DAE-N security, but not MRAE security. If used appropriately, SIV mode provides both MRAE
and DAE-N security.

5. In the context of our work header, additional data and associated data are interchangeable terms.
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The DAE-N-advantage of an attacker A with access to two oracles (the first called left-hand, the second called right-hand) in Π is
defined

Advdae´n
Π pAq “ |PrrAO

Enc
k p¨,¨,¨q,ODec

k p¨,¨,¨q “ 1s

´ PrrA$p¨,¨,¨q,Kp¨,¨,¨q “ 1s|

where k $
ÐÝ Genp1ηq and OEnc

k p¨, ¨, ¨q and ODec
k p¨, ¨, ¨q denote an encryption oracle and a decryption oracle, respectively. Further, let

$p¨, ¨, ¨q be an algorithm returning a random bitstring c with c PM and Kp¨, ¨, ¨q an algorithm always returning K.
The adversary may not repeat an IV in a left-query and may not ask a right-query pH, IV, Y q if some previous left-query

pH, IV,Xq returned Y . (MRAE security defines Advmrae just the same, but restricts the adversary to not repeat a left-query and
may not ask a right-query pH, IV, Y q if some previous left-query pH, IV,Xq returned Y .)

A scheme Π is DAE-N secure iff, for all ppt algorithms A,

Advdae´nΠ pAq ď neglpηq

for a negligible function neglpq and a security parameter η.

AEAD security [39] has been proven for CCM by Jonnson [24] and for GCM by McGrew and Viega [32]. In Appendix A,
we show that this implies DAE-N security.

Symbolic model and deduction relation
We represent the equations in Example 1 in the deduction soundness framework as a typed symbolic model and deduction
relation $ between a set of terms the adversary knows, and a term the adversary can deduce from this set. A term is
deducible if it can be constructed from other deducible terms or obtained by applying decryption and similar operations.
In our case, the symbolic model consists of a two randomized function klc and klh, representing AEAD key generation, an
encryption function E with four arguments, and a function conS that transforms terms into IVs. The superscript l marks kc
and kh as randomized, as opposed to E and conS which are deterministic. Both kc and kh are implemented in an identical
way, but different symbols are used to mark keys that may be corrupted initially, and keys that shall not be revealed. This
is ensured by the protocol conditions below. We use kx to make statements that hold for both kh and kc.6

For each l, klx represents a different, randomly chosen key. The types make sure that the first argument to encryption is
always a key and that the second is an IV. The other two arguments, the authenticated information and the message, can
be arbitrary terms. The deduction relation is defined by the following four rules:

klxpq conSpnq H m

Epklxpq, conSpnq, H,mq

Epklxpq, conSpnq, H,mq

conSpnq

Epklxpq, conSpnq, H,mq

H

Epklcpq, conSpnq, H,mq

m
From top left to bottom right, they allow (a) the attacker to construct encryptions if he knows all inputs, (b) to extract the
IV, (c) to extract the authentication information and (d) to deduce the message if the key may be corrupted initially. The
protocol conditions in the following paragraph ensure that the adversary only learns keys that are initially corrupted, and
hence (d) correctly represents the first equation in Example 1, as w.l.o.g., the symbolic adversary corrupts all keys klc from
the start.

Implementation
An implementation consist of a Turing machine that computes each function symbol, a length function that for each term
predicts the length its corresponding bitstring has, an interpretation function that defines how bitstrings are interpreted
as terms and a valid predicate that restricts the operations an attacker can perform. The latter is used to define protocol
conditions. These are necessary for soundness results that have only standard assumptions on the cryptographic primitives,
as the following example illustrates. It is well known that IND-CCA security does not guarantee anything in the presence
of key-cycles [3]. Hence soundness can only hold if the deduction soundness attacker (and thus the protocol) is restricted to
not produce them. Alternatively, stronger notions of security such as key-dependent message security can be used. There
is a trade-off between protocol conditions and requirements on the cryptographic algorithms.

In our case, the Turing machine implementation is constructed using a DAE-N secure encryption scheme and an
injective function that maps the bitstring representation of any terms in S into the IV space. For GCM and CCM, e.g., this
can be a simple concatenation if we can guarantee that all terms in S can be represented in 32 bit. Our result is parametric
in this S. We define the bitstring representation of an encryption to contain the authenticated information and the IV in the
clear. The length function and the interpretation function are straight-forward. (See Appendix E for details.)

The validity predicate enforces the following protocol conditions (paraphrased for simplicity):
1) AEAD keys kl can only occur in the first position of an E-term or in an initial corruption query.
2) No n in Epkl, conSpnq, H,mq occurs twice for the same l.
3) Whenever conSptq appears in some term, t P S.

6. There is a similar distinction for E that we gloss over here, but is explained in detail in Appendix B.



13

Proof overview
Due to its size (about 15 pages), we need to refer to the full version [17] for the proof, but will outline its structure here.
We show deduction soundness in a stepwise proof over four games, starting from the deduction soundness game. This
game is used to state that an adversary can never generate a bitstring that can be parsed to a term that he should not be
able to deduce according to $. In this game, the adversary interacts with an oracle that gives him access to the bitstring
representation of terms of his choice. In the first step, it is shown that terms only collide with negligible probability. In the
second, cyphertexts under honest keys are replaced with random bitstrings. In the third, the winning condition is made
stricter by adding a rule to the deduction system that allows the adversary to generate honest cyphertexts — any adversary
that can distinguish between the deduction soundness game with or without this rule is able to break the authentication
property of the scheme. In the fourth and final step, it is shown that the modified deduction system is compatible with
Cortier and Warinschi’s notion of composability.

At this point, the model is not yet suited for key-wrapping, as keys can only appear at key positions and thus not be
encrypted. Böhl et. al.’s framework handles this in an additional step. Function symbols carry an annotation to mark some
of their input positions as forgetful; in our case, the fourth position of E. We show that a forgetful implementation, i.e.,
an implementation that substitutes each input at a forgetful function with a random bitstring of the same length, is also
deduction sound. This allows us to relax the first condition of the validity predicate:

1) AEAD keys kl can only occur in an initial corruption query, in the first position of an E-term, or as a subterm of a
forgetful position of a function symbol that we compose with (but not E itself).

The last disjunct implicitly excludes key-cycles: by composing our AEAD model and implementation MAEAD with (a
renamed version) of itself, M 1

AEAD , keys of MAEAD can encrypt keys of M 1
AEAD , but not vice versa.

Relation to our model
Our model has to make sure that for all possible traces, all three conditions of the validity predicate hold. The first condition
can be checked syntactically: keys are indeed only output within encryptions terms, where they occur at position one or
four. The only use at the fourth position is in the rule for key-wrapping.7 There, key-cycles are avoided by means of the
restriction Ltpel ,wlq. The lemma key level handle ensures that the level associated to each key is always the same. We can
hence iteratively apply the compositionality result for all keys of level 1, 1 ` 1, etc.; the restriction associated to Lt makes
sure that keys in the fourth position are always of lower level than the key at position one.

As a side-effect, however, the dynamic corruption of encryption keys is not guaranteed to be deduction sound. This is
unfortunate, because the policy we propose implements a key-hierarchy to limit the potential damage due to wrapping
keys that leak, e.g. due to side-channel attacks or brute-forcing.

Consequently, we refrained from formalising this property, as the soundness of a model that includes dynamic cor-
ruption cannot be guaranteed. There is an existing proposal that permits computational soundness without such protocol
restrictions [5] that applies to a hybrid encryption scheme based on CBC-mode and an arbitrary MAC [46]. We leave
extending these results and investigating the resistance against key-leakage to future work.

The second condition requires the protocol to make sure each IV is only used once per key, for all protocol traces. This
is guaranteed by the lemma uniqueness IV, which can be verified using Tamarin.

The third restriction can be checked syntactically, if we fix an implementation of conS . For instance, we can set S to
the set of terms xt1, t2y such that t1 has a suitable type for device ids, e.g., t0, 1u32 and t2 represents t1, . . . , 232u. We then
define the implementation of conS to decode their bitstring representation and concatenate them.

Limitations of deduction soundness
We stress that deduction soundness is only a necessary criterion for computational soundness, as it only argues about the
term representation and the deduction relation, but not the process representation. Our symbolic results do not necessarily
carry over to the computational model. However, it was helpful in determining the validity conditions. Cortier and
Warinschi point out that, in addition to deduction soundness, a so-called commutation property is necessary to establish
computational soundness [16]. It is not known how to do this in a modular manner.

Roughly speaking, deduction soundness by itself talks about secrecy, not integrity. We opted for deduction soundness
because of the composability it offers. How to obtain composability and computational soundness at the same time remains
an interesting open question but we consider this question out of the scope of this paper.

8 RESULTS FOR SIV
As we have pointed out before, user-provided IVs constitute a considerable attack vector. An alternative to generating IVs
internally is to get rid of them altogether. Rogaway proposed a construction where the initialisation vector is synthesised
from the authenticated information and the message using a hash function [41] (see Figure 3).

We can readily apply the deduction soundness result to SIV mode, if we apply the construction sketched in Figure 4.
As Rogaway showed, this construction can turn SIV mode into a MRAE secure scheme [41, Section 7], which implies

DAE-N security. Interestingly, the construction effectively vanishes if either iv or h are always set to the empty string

7. The payload in the rule for encryption (5) is guaranteed to not be a key by lemma key int conf.
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dep. lemma steps seconds

origin 2087 103
counter mono 1880 79
uniqueness IV 8 16
key usage 86 18
key int conf 443 46
key level handle 170 22

TABLE 3: Results for SIV mode.

h m

Fk1 Ek2

csiv

h m

Fk1 Ek2

csiv

Fig. 3: SIV encryption (left) and decryption (right).

ε. We can therefore argue about SIV mode by slightly modifying our model so that the third position of senc{4, i.e.,
the authenticated information, is always set to ε. As concatenation cancels out, SIV by itself is a valid cryptographic
implementation and the existing deduction soundness result applies. We must still ensure uniqueness of iv , so we include
the device identifier and counter in the header. Finally, we thus verify all lemmas from Section 6 in 284 seconds overall (see
Table 3 for details). SIV mode was considered for inclusion in PKCS#11 v3.0 [44], but as of now, it is not supported [35].
If SIV was supported, no modification to C WrapKey would be necessary (as opposed to internal-nonce generation for
GCM/CCM).

9 RELATED WORK

The search for logical attacks on security APIs goes back to Longley and Rigby [31] and Bond and Anderson [9]. There is a
huge body of work specifically on PKCS#11 [10, 14, 18], but there have also been academic proposals for new APIs [28, 15,
27]. While attacks were often a driving factor, a lot of effort was directed towards finding configurations that are secure,
i.e., that preserve secrecy of keys.

There are three major approaches to the analysis of PKCS#11 configurations. The first is using program verification
techniques, but this was not automated and therefore has largely been discarded [20, 21]. The second approach is using
security type-checking on the implementation, e.g., C-code [12] or a domain-specific language [2]. This technique was used
to show secrecy of keys against a Dolev-Yao attacker, but the type-system needs to be modified to reflect new cryptographic
primitives like AEAD encryption. With the third approach, adoption of new primitives is easier. Here, protocol verification
techniques are used. Essentially, the security token is the only participant in a protocol, and the API-level adversary is
represented by the network attacker. Early results were based on model-checking [18] and thus limited to a fixed number
of keys, but under certain assumptions, the soundness for an unbounded number of keys can be established [22]. The
high degree of automation even allows for automated attack reconstruction [10]. More flexibility can be achieved by using
protocol verification tools in the unbounded model, as existing results for the soundness of a bounded model do not apply
if the API itself is modified, e.g., by introduction of stronger cryptographic primitives [29]. To our knowledge, the two

iv h m

SIV

csiv

Fig. 4: DAE-N/MRAE secure scheme from SIV mode.
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most functional yet secure configurations that were discovered either have keys that lose functionality on wrapping and
reimporting [10] or do not allow to export wrapping keys [10, 29].

In contrast to finding configuration which are secure against logical attacks, cryptographic security proofs for Security
APIs [27, 11] achieve stronger guarantees, but have not been automated so far. Even though some results retain compatibil-
ity with PKCS#11 [42], their focus is on secure design, not identification of secure configurations. Furthermore, following
cryptographic necessity, the proposed design forbids that keys may be used for more than one purpose, e.g., the keys
used for wrapping and encryption need to be separated by design, in contrast to the policy identified here. While this is
cryptographic good practice, PKCS#11 policies often provide this functionality to allow for more flexibility in HSM-based
protocols.

The idea of relating symbolic abstractions to cryptographic security notions goes back to Abadi and Rogaway’s
introduction of computational soundness [1]. Various results established the soundness of symmetric encryption [6],
signatures [7], and hash function [23], just to name a few. Most results exclude key-cycles [6], however, it is possible
to overcome this limitation by strengthening the cryptographic requirements [3] or the Dolev-Yao attacker [30]. A priori,
these results do not compose, hence Cortier and Warinschi proposed deduction soundness [16] as a framework that allows
for some amount of composability. Subsequent work in this framework covered most cryptographic primitives present
in PKCS#11, including MACs, hashes, signatures, symmetric and public key encryption [8]. To be sure that we handle
device-internal nonce generation correctly, we introduce deterministic authenticated encryption with associated data to
this framework.

10 CONCLUSION

We summarize our suggestions for PKCS#11 version 3.0 and other Security APIs and point out challenges in the protocol
verification approach.

The addition of AEAD schemes to PKCS#11 has shown great potential for functional and secure key-management
policies. It is vital that HSMs can guarantee network-wide unique IVs, thus this should be mandated for key-wrapping. The
current interface does not provide this IV in the function output, which is making a device-internal generation impossible
or at least unnecessarily complicated. The attributes attached to a key should be authenticated with the wrapping, and
AES keys should either be usable for wrapping and unwrapping, or for encryption and decryption. In contrast to previous
policies, the authenticity of a key’s attribute is guaranteed and thus both encryption and wrapping keys can be wrapped.
While we proposed this policy for PKCS#11, it is also compatible with the Key Management Interoperability Protocol
(KMIP) [26], an independent standard for key-management that is also governed by OASIS. KMIP allows for (but does
not default to) authenticating attributes when exporting and importing keys. It provides support for the GCM and CCM
modes of operation as well as internal IV generation.

Our approach was based on protocol verification, which was flexible enough to handle the introduction of new
primitives, however, finding the correct equations and protocol conditions is not easy. Despite the huge body of work
in computational soundness, there was no result that gave an answer right away. No computational soundness results
covers the range of cryptographic primitives supported by PKCS#11. While Böhl’s deduction soundness result does,
thanks to its composability, it provides weaker guarantees. We thus encourage future research to consolidate existing
knowledge on computational soundness and to facilitate the adoption of new primitives by investigating the composability
of computationally sound cryptographic primitives.
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APPENDIX A
AEAD SECURITY IMPLIES DAE-N SECURITY

We now want to show that for “AE with AD” schemes that are secure considering privacy and authenticity as defined
above, it holds that those schemes are also DAE-N secure.

Lemma 1 (AEAD security [40, Proposition 8]). Let Π = (Gen,Enc,Dec) be a authenticated encryption with associated data with
AD space HAD , IV space N and message space M[38]. Let A be an adversary with access to two oracles. Suppose A runs in time t
and asks qL queries to its left oracle, these totaling uL bits, and asks qR queries to its right oracle, these totaling uR bits. Then there
exist adversaries D and F such that

Advdae´n
Π pAq ď AdvprivΠ pDq ` qR AdvauthΠ pF q

where D runs in time tOpuL ` uRq and asks qL queries totaling uL bits, and F runs in time t + O(uL ` uR), asking at most qL
left-queries and one right-query, these totaling at most ul ` uR bits.

Proof. This proof is exactly the proof of [40, Proposition 8], however, instead of the modified syntax for deterministic
authenticity/privacy, the original syntax [38] needs to be employed, i.e., the oracles take a third input for the IV, hence
Op¨, ¨q is replaced by Op¨, ¨, ¨q for every oracle. Both definitions restrict the adversary to not query the same IV twice.

APPENDIX B
DEDUCTION SOUNDNESS: BACKGROUND

Cortier and Warinschi [16] defined the notion of deduction soundness which was a first step towards a framework, helping
to prove the computational soundness of cryptographic protocols more easily. Böhl et al. [8] extended their work by getting
rid of some prior limitations and adding more security primitives (like MACs or hashes) to their framework.

Our contribution, is to extend the work of Böhl et al. by adding AEAD schemes to the composition theorems. To achieve
this in a more readable way, we will try to use a very similar notation and writing style.

B.1 Symbolic model
Symbolic models in our sense are used to represent an abstract and formal environment to verify the security of crypto-
graphic protocols for specific security notions in the ”symbolic world”. Extending the work of Böhl et al. we will adopt
their symbolic model making the extension more easy and increase the readability of the work.

We define our symbolic model M to be a tuple of the form M “ pT ,ď,Σ,Dq, where T defines the set of data types,
ď the corresponding sub type relation, Σ the signature and D defines the deduction system. We will define them in detail
step by step in the following paragraphs.
Data types T and sub type relation ď
We define the symbolic model to have data types T , which we require
‚ to have a base type J, and
‚ to have a sub type relation ď.

We require ď to be a preorder and that for every τ P T , it holds that τ ď J (every type τ P T zJ is a sub type of the base
type J).

Signature Σ and variables
Let the signature Σ be a set of function symbols and corresponding arities, such that each function symbol f has an arity
of the form

arpfq “ τ1 ˆ ...ˆ τn Ñ τ

https://cryptosense.com/blog/attacks-on-key-wrapping-in-pkcs11-v2-40/
https://cryptosense.com/blog/attacks-on-key-wrapping-in-pkcs11-v2-40/
https://eprint.iacr.org/2012/423


18

with n being a natural number (n ě 0) and τ, τi P T for 0 ď i ď n.
For function symbols c with 0 arguments (meaning n = 0), we call c a constant.
We also refer to τ as the type of the function f (type(f ) = τ ), with τ “ J for all function symbols. The only exception to
this rule are garbage terms of the base type J, called gJ.
Garbage of type τ : We require from our signature to contain constants gτ , such that for all τ P T , gτ represents the garbage of
type τ . Typically bit-strings produced by an adversary, which cannot be parsed to a meaningful term, are associated with
garbage terms. Those constants are randomized. Randomization is denoted with labels (see Labels and randomness) applied
to function symbols.
In addition to function symbols, we also define an infinite set of variables variables where for each variable x P variables,
x is of some type τ P T .

Labels and randomness
For each symbolic model M we fix an infinite set of labels labels = labelsH Y labelsA where both sets are disjoint and
labelsH denotes an infinite set of honest labels, while labelsA denotes an infinite set of adversarial labels. Labels denote
randomness, therefore it is essential, that we distinguish between honest and adversarial labels.

Example 3. t :“ enclhpk,mq with lh P labelsH and ar(enc) = τkeys ˆJ Ñ τcipher

Example 4. t :“ nlapq with la P labelsA and ar(g) = τnonce

Example 5. t :“ fpt1, t2q with ar(f ) = τ1 ˆ τ2 Ñ τ

We see one application of an honest, randomized function in Example 3, whereas we see an adversarial, randomized
function application in Example 4. In Example 5 we see an application of an deterministic function.

Set of terms
We define Terms (Σ, T ,ď) :=

Ť

τPT set of terms of type τ , where the latter is defined inductively by

t : “

| x

| fpt1, .., tnq

| f lpt1, .., tnq l P labels

where t is a term of type τ , x is a variable of type τ , fpt1, .., tnq is an application of a deterministic f P Σ and f lpt1, .., tnq
is an application of a randomized f P Σ For fpt1, .., tnq and f lpt1, .., tnq , we further require that each ti is of type τ 1i with
τ 1i ď τi and that the arity of f is arpfq “ τ1 ˆ ...ˆ τn Ñ τ .
We also write Terms instead of Terms (Σ, T ,ď) if M is clear from the context and also write t “ f lpt1, .., tnq for general
terms (also for deterministic function symbols).

Substitutions
For xi, ti P T and i P t1, .., nuwe write δ “ tx1 “ t1, .., xn “ tnu to refer to a substitution with domain dompδq “ tx1.., xnu.
A substitution δ “ tx1 “ t1, .., xn “ tnu is well-typed if for each i P t1, .., nu : ti ď xi. In our symbolic model we only
consider well-typed substitutions. We write δptq “ tδ for an application of a substitution δ of a term t.

Deduction systems
Each symbolic model contains a deduction relation $: 2Terms ˆTerms , which is used to model the capabilities of a symbolic
adversary to retrieve information from terms.
With T $ t we describe the capability of a symbolic adversary to build t from the set of terms T and say t is deducible from
T . Usually deduction relations are defined through deduction systems which we formally specify as follows.

Definition 2. (DEDUCTION SYSTEM). A deduction system D is a set of rules t1,..,tn
t such that

t1, .., tn, t P Terms pΣ, T ,ďq. The deduction relation $DĎ 2Terms ˆ Terms associated to D is the smallest relation satisfying:
‚ T $D t for any t P T Ď Terms pΣ, T ,ďq
‚ if T $D t1δ, .., T $D tnδ for some substitution δ and t1,..,tn

t P D then T $D tδ.
Review of Definition 1 by Böhl, Cortier, and Warinschi [8]

Further we require for all deduction systems the rule
glJ

for all glJ P Σ and l P labelsA .
Note that we omit D from $D if D is clear from the context.
Additional Notes:
‚ For δ being a substitution we say that t1δ,..,tnδtδ is an instantiation of t1,..,tnt P D
‚ We require deduction relations to be efficiently decidable. Knowing this, for T $ t we can always efficiently find a sequence
π “ T

a1
ÝÑ T1

a2
ÝÑ ..

an
ÝÝÑ Tn such that for all i P t1, .., nu it holds that:

1) ai “ t1,..,tn
t

2) t1, ..tn P Ti´1

3) t1 R Ti´1

4) t1 P Ti
5) t P Tn
We refer to π as an deduction proof for T $ t.
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B.2 Implementation
As well as the symbolic model, we also redefine the corresponding implementation of Böhl, Cortier, and Warinschi [8].
We define I as an implementation of a symbolic model M with I = pMη, J¨Kη, lenη, open η, valid ηqη being a family of tuples. In
the following, we will omit the security parameter η for readability.

The components of I are defined as follows:
‚ Turing machine M

Provides concrete algorithms for the corresponding function symbols in the signature of the symbolic mode. Those algorithms
operate on bitstrings.

‚ Mapping function J¨K
The function J¨K : T Ñ 2t0,1u

˚

maps each type to a set of bitstrings.
‚ Length function len

The function len : Terms Ñ N returns for each term the length of its corresponding bitstring.
‚ Interpretation algorithm open

The algorithm open interprets bitstrings as terms.
‚ The valid predicate

To get computational soundness results we usually have to restrict the implementation. In our very case, the valid function takes
care of this. The valid function takes a trace T as an input (we will formally introduce traces later on in Definition 7) and returns
a boolean value representing the validity of this trace.

Additionally we have the following requirements on the implementation I (to the symbolic model M corresponding).
Requirements:

1) For each τ P T we require JτK Ď t0, 1uη to be nonempty. For the base type J we require JJK = t0, 1u˚ and that for all τ, τ 1 P T
it holds that, if τ ď τ 1 then JτK Ă Jτ 1K and otherwise JτK X Jτ 1K = H.
Further we define
‚ JT K as

Ť

τPT {tJuJτK
‚ xc1, .., cn, τy as a bijective function that encodes c1, .., cn to c1 with c1 P JτK.

2) The Turing Machine M is required to be deterministic, but has a random tape R provided at each run. Precisely, we require for
each f P Σ which is not a garbage symbol and has arity arpfq :“ τ1 ˆ .. ˆ τn Ñ τ , that M calculates a function pMfq on
input f . The domain of pMfq should be Jτ1K ˆ .. ˆ JτnK ˆ t0, 1u˚ and the range JτK.
To generate a bitstring for a term t “ f lpt1, .., tnq we apply pMfq to the bitstrings of the subterms ti of t and use some
randomness (except for deterministic function symbols). The recursively resulting bitstring JtK is called concrete interpretation of
t.

Interpretations
In cryptographical applications, it occurs that the same random values occur multiple times within the same term, for instance, if a

random nonce appears multiple times in an encryption. To deal with such occurrences within our interpretation, we will use a partially
defined mapping L :t0, 1u˚ Ñ HTerms from arbitrary bitstrings to so-called Hybrid Terms, which acts as a library.

Hybrid Terms are either garbage terms or t “ f lpc1, .., cnq where f P Σ with arpfq :“ τ1 ˆ .. ˆ τn Ñ τ and ci PJτiK for
i Pt1, .., nu . The domain of L dompLq Ď 2t0,1u

˚

is the set of bitstrings for which L is already defined. The interpretation of
bitstrings c P dompLq with respect to L is defined as LJcK:“ f lp LJc1K, ..,LJcnK q if Lpcq “ f lpc1, .., cnq and LJcK:“ Lpcq for
Lpcq being a garbage term. A complete mapping is given, if @pc, f lpc1, .., cnqq P L : c1, .., cn P dompLq. Generating function
In the following we will define a generate function using a mapping L introduced in section B.2. This generate function takes a term t
= f lpt1, .., tnq as input and produces a bitstring c corresponding to t.

To produce c, the Turing machine M has to use the random tape R as a source of randomness, using an algorithm Rptq : Terms Ñ
t0, 1uη which produces a different random bitstring r depending on a term t P Terms .

Listing 1: generate
generateM,Rpt, Lq:

if for some c P dompLq we have LJcK ““ t then
return pc, Lq

else
for i P t1, ..., nu do

let pci, Lq :“ generateM,Rpti, Lq
let r :“ Rptq
let c :“ pMfqpc1, ..., cn; rq
let Lpcq :“ f lpa1, ..., anqqpl P labesHq
return pc, Lq

Additional notes:
‚ generate also updates L.
‚ generate depends on M and R, but we will omit them if they are clear from the context.
‚ If L is complete, it holds that for all terms t P Terms with t “f lpt1, .., tnq and pc, L1q :“ generate pt, Lq, L1 is also complete.
‚ For all subterms t1 “f lpt1, .., tnq of t where l P labelsA , there is a c P dompLq with LJcK “ t1
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‚ There is no t2 being a subterm of t, s.t. t2 “ glpq and l P labelsH .
The last point ensures that all bitstrings generated by the generate function only contain non-garbage function applications where
the function symbols carry an honest label l P labelsH .

Parsing function
In addition to the generate function which produces bitstrings from terms, we require from the implementation the definition of
a function which produces terms from bitstrings. The function takes a bitstring c and a mapping L as input and returns a term
t P Terms and an updated mapping L1.
Since the function depends on the open : t0, 1u˚ ˆ libs Ñ{0, 1}˚ ˆ HTerms function provided by an concrete implementation, we
have to omit an exact definition of parse but require the following structure:

Listing 2: parse
parsepc, Lq:

if c P dompLq then
return pLJcK, Lq

else
let Lh :“ tpc, f lp...qq P L|l P labelsH u
let L :“ p

Ť

pc,¨qPL open pc, Lhqq

let G :“ tpc, g
lpcq
J qu pl P labelsH q

while G “ H do
let L :“ pLzGq Y p

Ť

pc,¨qPG open pc, Lhqq

let G :“ tpc, g
lpcq
J q|pc, f lp.., c, ..qq P L^ c P dompLq

return pLJcK, Lq

Additional notes:
‚ has to provide a concrete context such that different open functions can be composed
‚ open is only allowed to use honestly generated bitstrings
‚ Foreign bitstrings, meaning bitstrings of a data type which is not part of the implementation, are ignored by open
‚ open functions are commutative due to the properties stated above, which is important for the composition theorems in F.
Good implementation
Starting in this section we will describe several requirements and restrictions towards the behavior of an implementation. The term

good implementation refers to those implementations which satisfy all properties defined in this section.
Length regularity
We require that lenpf lpt1, ..., tnqq :“ |pMfqpc1, ..., cn, rq| only depends on the length of ci. Such a length function len is

equivalent to a set of length functions lenf : Nn Ñ N for each function symbol f P Σ with arpfq :“ τ1 ˆ ... ˆ τn Ñ τ . This
equivalence is needed to be able to compose length functions of different implementations as described in Section B.4.

Collision freeness
Problems occur if values in the mapping L are overwritten. Assume a bitstring c P dompLq is then parsed to a term t1 instead

of the intended term t. This could prevent an adversary from winning the deduction soundness game, so a good implementation
should be collision free. To define what collision freeness means we also need to introduce the notion of a supplementary transparent
function to model the capability of an adversary to choose arbitrary bitstrings for arguments of type J. This is needed since transparent
implementations also need to be collision free, because we want them to be composable, too.
In Definition 3 we introduce the mentioned supplementary transparent functions and in Definition 4 we finally introduce the notion
of collision freeness.

Definition 3. Supplementary transparent functions
For a set of bitstrings B Ă t0, 1u˚ we define the transparent model Mtran

supppBq as follows:
‚ T tran

supp :“ tJ, τ transuppu. τ
tran
supp is a subtype of J.

‚ Σtransupp :“ tfc : c P Bu (all function symbols are deterministic)
‚ Dtran

supp :“ t fcpq : c P Bu
and an implementation ItransupppBq as follows:
‚ Jτ transuppK :“ B
‚ pM tran

suppfcqpq returns c
‚ pM tran

suppfuncqpcq returns fc if c P B, K otherwise
(Review of Definition 2 by Böhl, Cortier, and Warinschi [8])

Definition 4. Collision-free implementation
Let DS1M,I,Apηq be the deduction soundness game from Listing 5 where we replace the generate function by the function generate’

from Listing 1. We say an implementation I is collision free if for all p.p.t. adversaries A

PrrDSMYMtran
supppJT Kq,IYItran

supppJT Kq,Apηq “ 1s

´PrrDS1MYMtran
supppJT Kq,IYItran

supppJT Kq,Apηq “ 1s
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is negligible.
(Review of Definition 3 by Böhl, Cortier, and Warinschi [8])

Type safety
We define type safety in the following sense

Definition 5. Type safe implementation
We say that an implementation I of a symbolic model M is type safe if
piq openpc, Lq “ pc, glJq for l P labelsA if c R JT K.
piiq openpc, Lq “ openpc, L|JT Kq where L| JT K :“ tpc, hq P L : Dτ P T ztJu : c P JτKu.
(Review of Definition 4 by Böhl, Cortier, and Warinschi [8])

Intuitively, piq states that open should not work on foreign bitstrings and only return garbage of type J, while piiq states that the
behavior of the open function is not altered by any foreign bitstring in L. This guarantees that composed open functions do not interfere
with each other, meaning they do not work on each others bitstrings.
Since we demand to run in polynomial time in size of the mapping L, we therefore demand a reasonable run time for open (since is
based on open ). valid requirements
Before we can start to define our requirements on the valid function, we will now introduce the notions of queries and traces.

Definition 6. Query
Queries in our case are requests sent by the adversary to the deduction soundness game (or any variation of it). A query q is either

”generate t”, ”sgenerate t”, ”c” or ”init T,H”.

Definition 7. Trace
We define a trace T as a time ordered list of queries T :“ q1 ` q2 ` ...` qn

Knowing this, we now state the requirements on valid which we need to be able to compose valid functions later on.
piq If valid(T` q) = true then for any variation q̂ of q, which we define explicitly below, it holds that valid(T` q̂) = true.

If q = ”generate t” and q̂ = ”generate t̂”:
Here, a variation t̂ of t is defined as follows: Any subterm f lpt1, ..., tnq of t where f is a foreign function symbol, i.e. f R Σ,
can be replaced by f̂ l̂pt̂1, ..., t̂nq where f̂ is another foreign function symbol and for all i P t1, ..., nu t̂i is either tj for some
j P t1, ..., nu (where each tj only can be used once) or t̂i does not contain any function symbols from Σ. As a special case, if for
example f̂ is ”empty”, we may replace f lpt1, ..., tnq with a term t̂1.
If q = ”init T,H” and q̂ = ”init T̂ , Ĥ”:
T “ pt1, ..., tnq and T̂ “ pt̂1, ..., t̂nq where for each i P t1, ..., nu t̂i is a variation of ti; and H “ ph1, ..., hmq and
Ĥ “ pĥ1, ..., ĥmq where for each i P t1, ...,mu ĥi is a variation of hi.

piiq We demand that, if valid(T` q) = true and term t P q, then for any t P stptq it holds that valid(T` ”sgenerate t1”) = true.
piiiq The run time of valid(T) should be polynomial and should only depend on T.

To conclude: If an implementation I is length regular, collision free, type safe and if the requirements on valid hold, we call I a good
implementation.

B.3 Transparent functions
To conclude the idea from Definition 3, we will now start to formally define the notion of transparent functions (and also transparent
symbolic models and transparent implementations). We need those notions, because we want to achieve our soundness results in the
presence of any public data structure, for instance: tuples, arrays, XML files etc. We call those public data structures transparent
functions and will define transparent symbolic models and transparent implementations using such functions in the following.
Transparent symbolic models:
A transparent symbolic model Mtran “ pTtran,ďtran,Σtran,Dtranq is defined similar to the symbolic model from B.1 but having
a specific definition of the deduction system Dtran stated below:
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Transparent implementations:
A transparent implementation Itran “ pMtran, J¨Ktran, lentran, opentran, validtranq of a symbolic model is also an implementation,
meaning it meets the same requirements as in B.2. For the Turing machine Mtran we require two additional modes of operations: func
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and proj. We define them right below:
For all function symbols f P Σ with arity ar(f ) = τ1 ˆ ...ˆ τn Ñ τ we define

pMtran funcq : t0, 1u˚ Ñ ΣY tKu

pMtran prod f iq : t0, 1u˚ Ñ t0, 1u˚

such that for all ci P JτiK with 1 ď i ď n and r P t0, 1uη

pMtran funcqppMtran fqpc1, ..., cn; rqq “ f

pMtran prod f iqppMtran fqpc1, ..., cn; rqq “ ci

and require that pMtran funcq “ K for all c R JT K. We also require that pMtran funcq and pMtran prod f iq both run in
polynomial time (depending on η).
The bitstring mapping J¨Ktran as well as the length function lentran are not defined any different as in B.2. The open function
opentran on the other hand is defined explicitly below:

Listing 3: opentran
opentran(c, L)

if c P JT K X dom(L) then
return (c, L(c))

else if pMtran funcqpcq ““ K then
find unique τ P T s.t. c P JτK and c R Jτ 1K

for all τ 1 P T with Jτ 1K Ĺ JτK
return pc, g

lpcq
τ q plpcq P labelsAq

else
let f :“ pMtran funcqpcq with

ar(f ) = τ1 ˆ ...ˆ τn Ñ τ
if pMtran prod f iq ““ K

for any i P r1, ns then

return pc, g
lpcq
τ q plpcq P labelsAq

else
for i “ 1 to n do

let ci :“ pMtran prod f iqpcq

return pc, f lpcqpc1, ..., cnqqplpcq P labelsAq

With this function, we can easily show that the implementation is type safe by using the two properties required by Definition 5. The
first property is already required above (see func) and the second property holds because L is not used by the opentran function.
Also transparent functions are not restricted in any way so we define validtranpTq = true for all possible traces T.

B.4 Composition
In this we will explain how to compose two symbolic models M1 “ pT1,ď1,Σ1, D2q and M2 “ pT2,ď2,Σ2, D2q and there
corresponding implementations I1 and I2 in a general way.

We define the composition of M1 and M2 as

M1 “ pT1 Y T2,ď1 Y ď2,Σ1 Y Σ2, D1 YD2q

if
1) Σ1 X Σ2 “ tgJu
2) T1 X T2 “ tJu

To compose two implementations I1 and I2 we require that
iq for all τ1 P T1ztJu, τ2 P T2ztJu we have Jτ1KX Jτ2K “ H

iiq and further that I 1 = I1 Y I2 is a good implementation of M1.
To fulfill requirement iiq we now start to define I 1 :“ I1 Y I2. The Turing machine M 1 “ M1 YM2 returns pM 1fq :“ pM1fq if
f P Σ1 or pM 1fq :“ pM2fq otherwise.
For all τ P T1 we set JτK1 :“ JτK1 and for all τ P T2 we set JτK1 :“ JτK2. Further we require all JJK1 “ JJK1 “ JJK2 “ t0, 1u

˚

As we saw in section B.2, the length functions are easy composable. We have len1 :“ lenf1 : NN Ñ N with f1 P Σ1 and
len2 :“ lenf2 : NN Ñ N with f2 P Σ2. We simply define len1 :“ len1 Y len2.
We define the composition of the open function in the following way:

Listing 4: open1

popen1 ˝ open2qpc, Lq:
let pc, tq :“ open1pc, Lq
if t “ glJ for some l P labelsA then

return open2pc, Lq
else

return pc, tq
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Therefore we have open’ :“ open1 ˝ open2.
From the valid predicate valid’, we demand both valid1 and valid2 to remain valid, so we write valid1pTq :“ valid1pTq ^

valid2pTq.
After defining the composition I 1 “ pM 1, J¨K1, len1, open1, valid1q we need to show that I 1 is a good implementation B.2 of M1.
Type safety holds since T1XT2 “ tJu is given by requirement (2.) of composing symbolic models. This implies that JT1K1XJT2K1 “

JJK1 and since we have I1 and I2 being type safe and open1 ˝ open2 “ open2 ˝ open1 we can easily conclude that I 1 is also type safe
(see B.2 for concrete requirements).
Length regularity is automatically given for len1 since Σ1 X Σ2 “ tg

1
Ju leads to len1 X len2 “ H. Hence, for any input f P Σ1

len1pf lpt1, ..., tnqq returns len1pf
lpt1, ..., tnqq, what is length regular by assumption, and returns len2pf

lpt1, ..., tnqq for f P Σ2

otherwise, what is naturally also length regular by assumption.
The valid requirements are fulfilled by valid’ by construction since both valid1 and valid2 must hold for valid’ to hold.
Collision freeness is the second requirement for composing implementations as well as one of the requirements of a good imple-
mentation. As a strategy to show that I 1 is collision free we show that additional requirements for valid1 and valid2 hold. Those
requirements are concretized in Lemma 2.

Lemma 2. Let M1,M2 be symbolic models with implementations I1 and I2, respectively. If in addition to requirements (1.),(2.) [of
the symbolic model composition] and iq [of the implementation composition] the following requirements for valid1pTq :“ valid1pTq^
valid2pTq hold:

1) Let T̂ be T with all silent generate ”sgenerate t” replaced with normal generate queries ”generate t”. Then valid1pTq ñ
valid1pT̂q.

2) Let x P t1, 2u. If validx(”init T,H”), then for each t P T YH all function symbols in t are from Σx or no function symbol
in t is from Σx.

3) Let x P t1, 2u. Let T̂ be an expansion of π “ q1` ...`qn in the following sense: A qi = ”generate t” for i P t1, ..., nu is replaced
with q1

i , ..., q
m
i where qji = ”sgenerate tj , tj P stptq and tj does not contain function symbols from Σx for j P t1, ...,mu. Then

valid1xpTq ñ valid1xpT̂q.
then pM1, I1q and pM2, I2q are compatible.
Review of Lemma 1 by Böhl, Cortier, and Warinschi [8].

Proof. One can prove Lemma 2 by a sequence of games. First one would show that there is no adversary A who can
distinguish whether he plays DS1M1YMtran

supppJT 1Kq,I1YItran
supppJT 1Kq,A

pηq or the same game in which the generate’ function is
modified with

if c P dompLq X JT1K then
exit game with return value 1 (collisi on)

instead of

if c P dompLq then
exit game with return value 1 (collisi on)

After showing that the games described above are indistinguishable, one shows that the latter game is indistinguishable
from the original DS game.
Using Definition 4, the indistinguishability of the games described above suffices to proof that I 1 is collision free. (For the
full proof see Böhl, Cortier, and Warinschi [8])

B.5 Deduction soundness
Finally, in this section we will recall the notion of deduction soundness [8]. We define deduction soundness with the help of a game,
the DS game (see Listing 5).
To explain deduction soundness, we first will introduce the notion of a parameterized transparent symbolic model and its corresponding
parameterized transparent implementation and then continue with explaining the idea behind the DS game.

Definition 8. (Parameterization)
A mapping Mtranpνq from a bitstring ν to a transparent symbolic model Mtran is called a parameterized transparent symbolic
model. Respectively, we define a parameterized transparent implementation Itranpνq as mapping from the bitstring ν to a transparent
implementation Itran. Further, Itranpνq is an implementation of Mtran and the length(ν) ¡ length(p(η)) where p is a polynomial
function.
We also define ν to be good, if Itranpνq is a good implementation (see section B.2) of Mtranpνq.

The DS game is defined 1q between a challenger and an adversary A 2q to show that I is a deduction sound implementation of
M, where Mpνq :“MYMtran and Ipνq :“ I Y Itran.

1) The challenger keeps a set of requested terms S, a mapping L and a trace of queries T, while the adversary provides a parameter ν.
At first, with an ”init T,H” query, bitstrings corresponding to a set of terms T and a set of hidden terms H are generated. Then
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the adversary has the possibility to parse bitstrings to terms and to generate bitstrings from terms, while the valid predicate must
always hold on T during the game or the adversary losses (return 0). On the other hand, the adversary wins the DS game, if he
is able to create a bitstring which can be parsed, but is not deducible from S (which would be a non-Dolev-Yao term).

2) Deduction soundness of an implementation I with respect to a symbolic model M is illustrated in the following Definition.

Listing 5: Deduction Soundness game
DSMpνq,Ipνq,A(η):

Let S := H

Let L := H

Lat T := H

R Ð t0, 1u˚

Receive parameter ν from A

on request "init T,H" do
add "init T " to T
if validpTq then

let S := S Y T
let C := H

for each t P T do
let pc, Lq := generatept, Lq
let C := C Y tcu

for each t P H do
let pc, Lq :“ generatept, Lq

send C to A
else

return 0 (A is invalid)

on request "sgenerate t" do
if validpT` ”sgenerate t”q then

let pc, Lq :“ generatept, Lq

on request "generate t" do
add "generate t" to T
if validpTq then

let S := S Y ttu
let pc, Lq :“ generatept, Lq
send c to A

else
return 0 (A is invalid)

on request "parse c" do
let pt, Lq := parsepc, Lq
if S $D t then

send t to A
else

return 1 (A produced a non-DY term)

Definition 9. (Deduction Soundness)
Let M be a symbolic model and I be an implementation of M. We call I a deduction sound implementation of M, if for all

parameterized transparent symbolic models Mtranpνq and for all parameterized transparent implementations Itranpνq of Mtran that
are composable with M and I (see requirements from section B.4) we have

PrrDSMYMtranpνq,IYItranpνq,Apηq “ 1s

to be negligible for all probabilistic polynomial time adversaries A sending only good parameters ν where DS is the deduction
soundness game from Listing 5. Note that M YMtranpνq can be generically composed to a parameterized symbolic model M1pνq
and parameterized implementation I 1pνq, respectively.
(Review of Definition 5 Böhl, Cortier, and Warinschi [8])

Intuitively, we call an implementation I deduction sound with respect to its corresponding symbolic model M, if the deduction
relation $D reflects all capabilities of the computational adversary. Concretely, this means that no adversary can produce, given a set
of terms S, a bitstrings c corresponding to a term t with S & t.

Additionally, since the DS game does not prevent collisions, we naturally want to show that no adversary can produce those
collisions with an overwhelming probability. Since only generate function calls can produce collisions by producing a bitstring which
is already in L (the structure of the function on the other hand prevents collisions), it suffices to show that the following lemma 3 holds,
which is already proven by Böhl, Cortier, and Warinschi [8].
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Lemma 3. Let DS
1

Mpνq,Ipνq,A(η) be the deduction soundness game where we replace the generate function by the collision aware
generate function ( see Figure 3 [8]). Then no p.p.t. adversary A can distinguish DSMpνq,Ipνq,A(η) from DS

1

Mpνq,Ipνq,A(η) with
non-negligible probability. (Note that the transparent functions are already included Mpνq and Ipνq in here.)
(Review of Lemma 2 Böhl, Cortier, and Warinschi [8])

APPENDIX C
DEDUCTION SOUNDNESS OF AEAD SCHEMES

The advantage of deduction soundness is that it is relatively easy to extend. Böhl, Cortier, and Warinschi [8] already added
public datastructures, public key encryption, signatures, secret key encryption, MACs and hashes to their framework. Our
contribution to this will be, to extend the framework with authenticated encryption schemes with associated data.
We will define a symbolic model MAEAD and a corresponding implementation IAEAD. Then we will show that for any
symbolic model M which is composable with MAEAD (see Section B.4 ) and implementation I where I is a deduction
sound implementation of M, it holds that the composition I Y IAEAD is a deduction sound implementation of M Y

MAEAD if I is composable with IAEAD .
To achieve this, we will use the notion of DAE-N security (Definition 1) and rewrite the definition in a game-like way to fit
into the syntax of our computational model.

Computational preliminaries

Listing 6: DAE-N game

DAE -N(Gen, Enc, Dec)
A (η):

b
$
ÐÝ t0, 1u

oracles := H

on request "new oracle" do

let r
$
ÐÝ t0, 1uη

let k := Gen(1η, r)
oracles.add(k)
let ciphersk := H

send k to A

on request "OEnck pn,H,mq" do
if k R oracles then

send K to A
else

if b == 0 then
let c’:= Enck(n, H, m)

let c
$
ÐÝ t0, 1u|c

1|

ciphersk.add((c, m))
send c to A

else
send Enck(n, H, m) to A

on request "ODeck pn,H, cq" do
if k R oracles then

send K to A
else

if b == 0 then
if (c, m) P ciphersk

for some m
then

send m to A
else

send K to A
else

send Deck(n, H, m) to A

on request "guess b’" do
if b == b’ then

return 1
else

return 0
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Intuitively, the adversary A which now plays DAE-N game still tries to distinguish whether he interacts with real oracles
or with some fake oracles. Concretely, a bit b is chosen at random in the beginning of the game, which decides whether the
adversary gets a response from a real oracle (if b = 1) or from a fake oracle (if b = 0). If the adversary is able to send a request
”guess b1” (and b1 ““ b) with a probability significantly higher than 1

2 , he can break DAE-N security of the encryption
scheme. Note that we additionally added a random input parameter r to the key generation algorithm to clarify that all
oracles use a different source of randomness.
APPENDIX D
SYMBOLIC MODEL

At first we define the symbolic model MAEAD “ pTAEAD,ďAEAD,ΣAEAD,DAEADq:

Signature ΣAEAD:

kx : τkxAEAD
conS : J Ñ τnAEAD

Ex : τkxAEAD ˆ τ
n
AEAD ˆJˆJ Ñ τ cipherAEAD

are the featured function symbols, with x P th, cu and S being a set of possible nonces.
The randomized function kh returns honest keys while kc returns corrupted keys.
The deterministic function conS maps an arbitrary input value to a nonce from the set S.
The deterministic function Eh returns an honest cyphertext using an honest key, a nonce, and two additional arbitrary
values as input.
The only difference of Ec to Eh is that Ec uses some corrupted key as input and returns a corrupted cyphertext.

Set of types TAEAD

TAEAD “ tJ, τkxAEAD, τ
n
AEAD, τ

cipher
AEADu

Sub type relation ďAEAD
All types introduced above are direct sub types of the base type J.

Deduction System DAEAD:
klxpq conSpnq H m

Exp klxpq, conSpnq, H,mq

Exp k
l
xpq, conSpnq, H,mq

conSpnq

Exp k
l
xpq, conSpnq, H,mq

H

Ecp k
l
cpq, conSpnq, H,mq

m

APPENDIX E
IMPLEMENTATION

We now define a concrete implementation IAEAD “ pMAEAD, J¨KAEAD, lenAEAD, openAEAD, validAEADq for authenti-
cated encryption schemes with associated data. The implementation uses some DAE-N secure authenticated secret key encryp-
tion scheme ΠDAEN “ pDAEN.Gen,DAEN.Enc,DAEN.Decq. ΠDAEN additionally is collision free by construction
since a collision would break the authenticity of the encryption scheme. We fix a set of bitstrings S1 Ă t0, 1u˚, which
we will later require to correspond to a specified set of terms used to derive IVs. We also fix an arbitrary injective and
efficiently computable function ι : S1 Ñ JτNAEADK. We can now define the model and implementation as follows:

Turing machine MAEAD

Now we will give the computational interpretations of the function symbols defined in D.
‚ (MAEAD kxqprq: Let k := DAEN.Genp1η, rq.

Return xk, τkxAEADy
‚ (MAEAD conqpnq: Return xιpnq, τnAEADy
‚ pMAEADExqpk̂, n̂

1, H,mq: Parse k̂ as xkxτ
kx
AEADy.

Parse n̂ as xn1, τnAEADy.
Let c :“ DAEN.Enckpn

1, H,mq
Let Ĥ :“ xH,Jy Return xc, n̂1, Ĥ, k, τ cipherAEADy

are the computational interpretations of kx, con and Ex, respectively.
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The mapping function J¨KAEAD
The mapping function J¨KAEAD : T Ñ 2t0,1u

˚

is a function which maps each type τ P T to a set of bitstrings. J¨KAEAD
should fulfill all conditions stated in B.2. Namely, we demand from our concrete implementation that JJK = t0, 1u˚ and for
each x P tτkxAEAD, τ

n
AEAD, τ

cipher
AEADu that JxK Ă t0, 1uη . Further, we demand that for all x, y P tτkxAEAD, τ

n
AEAD, τ

cipher
AEADu JxK

X JyK = H.

The length function lenAEAD
The function lenAEAD : TermsÑ N computes the length of a term if interpreted as a bitstring, in other words lenAEAD(f lpt1,
t2, ..., tnq) := |(MAEADf )(c1, c2, ..., cn; r)|. The length regularity of lenAEAD (and therefore of our implementation) follows
directly from the construction of AEAD schemes.

The interpretation function openAEAD

The open function for AEAD is defined as follows:

Listing 7: openAEAD
openAEAD(c, L)

if c P JTAEADKAEAD X dom(L) then
return (c, L(c))

else if c = xk, τkxAEADy then

return (c, g
lpcq

AEADkx
)

else if c = xn1, τnAEADy then
return pc, τnAEAD)

else if c = xc1, τ cipherAEADy then

extract Ĥ = (H, J) from c’
extract n̂ = (n1, τnAEAD) from c’

for each (k̂, khxpq) P L do

parse k̂ as xk, τkxAEADy
let m := DAEN.Dec(k, n1, H, c’)
if m “ K then

return (c, E
lpcq
x (k̂, n̂, Ĥ, m))

return (c, glpcq
AEADcipher )

else

return (c, glpcqJ )

openAEAD returns (c, glpcqJ ) for any foreign bitstring and its behavior is in all cases independent on any foreign bitstring in
the library. Since openAEAD therefore fulfills the conditions of Definition 5, our implementation is type safe.

The validAEAD predicate
The validAEAD predicate is dependent on a set of terms S that specifies which terms can be turned into IVs by ι. As the
IV space is typically finite (e.g. for GCM mode), and ι is injective, S needs to be restricted, too. Our result is parametric
in S, S1 and ι. We may define S as a subset of the set of terms that is defined by composition, e.g., to derive S from a
transparent model. We therefore fix some model M “ pT ,ď,Σ, Dq and its deduction sound implementation I to compose
with, such that M and I are composable with MAEAD and IAEAD regarding the requirements from Section B.4. We then
choose S Ă TermspΣ Y ΣAEAD, T Y TAEAD,ď Y ďAEADq such that any bitstring representation for any term t P S is in
S1.

Formally, for any A and any a parameterized transparent symbolic model Mtranpνq with a corresponding parame-
terized implementation Itranpνq such that Mtranpνq and Itranpνq are composable with M YMAEAD and I Y IAEAD
regarding the requirements from Section B.4 for ν being send by the adversary A, we require that for the library L at any
moment in any instance of the deduction soundness game

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq

it holds that @s1.LJs1K P S ðñ s1 P S1.
For an appropriately chosen S, we can now define validAEAD as follows:

1q We demand that the trace T starts with exactly one init query ”init T,H” where at least one of them could be an
empty list.

2q The adversary is not allowed to use Ex in the the init query.
3q iq For the query ”init T,H” it should hold that:

˚ the function symbol kc should only occur in a term klcpq P T .
˚ the function symbol kh should only occur in a term klhpq P H .
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iiq For each label l of klx, l should be unique in T YH .
iiiq Whenever klxpq occurs in a generate query, klxpq must have occurred in the init query before.
ivq Except generation, klxpq should only occur in Ex as its first argument.

This rules guarantee that all keys are generated in the init query.
4q No tuple of pconSpnq, H,mq occurs twice in some trace T. In other words, we demand that for every term Expk

l
xpq,

conSpnq, H,mq pconSpnq, H,mq is different in each ”init T,H”, ”generate t” or ”sgenerate t” queries. (For all terms
Expk

l
xpq, conSpnq, H,mq, Expk

l
xpq, conSpn

1q, H 1,m1q P T it has to hold that

pconSpnq, H,mq “ pconSpn
1q, H 1,m1q.

5) For each term conSpnq, n P S.
These rules guarantee that all keys which may be used by the adversary are generated in the init query. They also
guarantee that the adversary has to decide which keys are corrupted and which keys are honest during initialization,
because we only allow static corruption of keys. Furthermore, to prevent key cycles, keys are only allowed to be used for
encryption and decryption. At last, the rules guarantee the freshness of the used nonces.

For all parse and generate requests of the adversary on the trace T all validAEAD conditions must be fulfilled.

APPENDIX F
AEAD COMPOSABILITY

In this section we will finally prove AEAD schemes to be composable with the deduction soundness framework. Like Böhl,
Cortier, and Warinschi [8], we will proof the composability of AEAD schemes similar to the already existing proofs of e.g.
public key encryption schemes, by using different games, which we show to be indistinguishable from each other. In other
words we will show an implementation of an AEAD scheme to be deduction sound in respect to its symbolic model. This
is concretized in the following theorem.

Theorem 1. Let M be a symbolic model and I its corresponding, deduction sound implementation. If M and I are composable with
MAEAD and IAEAD regarding the requirements from section B.4 and if the encryption scheme is DAE-N secure, then I Y IAEAD
is a deduction sound implementation of MYMAEAD .

Proof. Let A be a p.p.t. adversary and let Mtranpνq be a parameterized transparent symbolic model with a corresponding
parameterized implementation Itranpνq. Furthermore, let Mtranpνq and Itranpνq be composable with MYMAEAD and
I Y IAEAD regarding the requirements from B.4 for ν being send by the adversary A.
We have to show that the success probability of A winning the deduction soundness game

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq is negligible.
Intuition:
A wins the deduction soundness game if A can provide a bitstring which corresponds to a term t for which it holds that
A cannot deduce t from the previously generated terms, i.e. A does not ”know” t symbolically. Only one opportunity to
achieve this is added by adding AEAD.
Proof strategy intuition:
First we show that an adversary cannot find any collision to break the game. In the next step we replace honest encryptions
by random bitstrings. Using the fact that the scheme is DAE-N secure, an adversary cannot learn anything about the
original message except its length. In the third step we add another deduction rule to give the adversary the opportunity
to create honest encryption of chosen messages. If the adversary would note a difference between this two steps it would
break the authentication of cyphertexts, but this could only happen with negligible probability. In the last step we show
that the encryption can be simulated with parameterized transparent functions. So if an adversary would come up with a
non-DY term this would lead to a non-DY request in the DS game of M and I . But this would contradict our assumption
of I being a deduction sound implementation of M.

F.1 Game 0
In this game, adversary A plays the original deduction soundness game from B.5.

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq

F.2 Game 1
In this game we replace the generate function in the deduction soundness game by the collision aware generate function
8. If A could distinguish between Game 0 and Game 1, this could be used to break the encryption scheme.

Listing 8: generate’
generate’M,Rpt, Lq:

if for some c P dompLq we have LJcK ““ t then
return pc, Lq
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else
for i P t1, ..., nu do

let pci, Lq :“ generateM,Rpti, Lq
let r :“ Rptq
let c :“ pMfqpc1, ..., cn; rq
let Lpcq :“ f lpa1, ..., anqqpl P labesHq
return pc, Lq

F.3 Claim: Game 0 and Game 1 are indistinguishable.
Since I Y Itranpνq is a collision-free implementation the only possibility for the adversary to find collisions is in IAEAD .
This on the other hand would only happen if the probability of DAEN.Encpk, n,H,mq “ DAEN.Encpk, n1, H 1,m1q
with pn,H,mq “ pn1, H 1,m1q is non-negligible. This would contradict the DAE-N security of AEAD, more concretely, this
would break the authentication of the scheme. Knowing that pI Y IAEADq Y Itranpνq is a collision-free implementation
Game 0 and Game 1 are indistinguishable by 3.

F.4 Game 2
In this game we make a few changes with respect to Game 1 concerning the possibilities of the adversary. We take his
option of learning something from cyphertexts or about honest keys, by replacing the cyphertexts created under honest
keys by random bitstrings. We abstract from just using random bitstrings by using encryptions of random bitstrings under
the same keys (because the adversary still needs the possibility to retrieve the nonce and the header) and also replace all
honest keys in the library by random bitstrings with the same length as the keys. Because of the properties of the DAE-N
secure scheme, A should not notice any difference between Game 1 and Game 2.
Concretely, we make the following changes:

1q Replace cyphertexts created under honest keys by encryptions of random bitstrings
In the generate (and generate’) function we insert

if t ““ Ehpk
l
hpq, conSpnq, H,mq then

let r1 :“ Rpc4q
let c :“ pM Ehqpc1, c2, c3, r

1q

else
let c :“ pM fqpc1, ..., cn; rq

end if
instead of the original line

let c :“ pM fqpc1, ..., cn; rq

c1 resembles the bitstring of the key, c2 resembles the bitstring of the nonce, c3 resembles the bitstring of the header
and c4 resembles the bitstring of the message. With Rpc4q we create a random value with the same length as c4. If the
term t represents an encryption under an honest key the corresponding bitstring is generated as usual (by generating
all the subterms first) replace c4 with a random bitstring of length |c4|, otherwise the generation of bitstrings works
like in Game 1.

2q Replace honest keys in the library by random bitstrings
If a honest key should be generated, instead of calling (MAEAD kh)(r), we pick a random r

$
ÐÝ t0, 1uη of length η. Then

we normally generate the key k $
ÐÝ DAEN.Gen(1η, r). Then we generate a second random value r1 $

ÐÝ t0, 1u|k| with
the same length as the key. We then use k̂ :“ xr1, τkxAEADy as the corresponding bitstring for khpq and remember k as
the true key. The parse function is the rewritten such that the remembered key for is used instead of the random value
in the library.

F.5 Claim: Game 1 and Game 2 are indistinguishable.
Intuition:

To show that Game 1 and Game 2 are indistinguishable, we use reduction, i.e. we show that if an adversary A can
distinguish Game 1 from Game 2, we could use A to construct an adversary B which could win the oracle-based DAE-N
game with non-negligible probability.

So we first show how we would construct B from A, i.e we show how B generates and parses bitstrings. Then we
analyze our construction and show indistinguishability between the two games:

1q How to generate bitstrings.
First, for each key generation request for honest keys (for all ”generate klh” queries), B does not call the generate
function, but instead request a new oracle from the DAE-N game and hence receives a new encryption and a
corresponding decryption oracle OEnck and ODeck (which encrypt and decrypt the given message if b ““ 1 or encrypt
an random bitstring and return always K for unknown queries otherwise). Furthermore, B picks a random bitstring
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k1 in a way such that k̂ :“ xk1, τkhAEADy P JτkhAEADKAEAD and then adds pk̂, klhpqq to L (A is not able to learn the value
of k what is required in the implementation E).
All other ”generate t” queries are handled as before (by calling the generate function).
To use the encryption oracle OEnck to get honest encryptions, we need to change the generate function in the following
way:
In the generate function

if t ““ Ehpk
l
hpq, conSpnq, H,mq then

let c :“ xOEncc1 pc2, c3, c4q, c11, τ
cipher
AEADy

else
let c :“ pM fqpc1, ..., cn; rq

end if
is inserted instead of the original line

let c :“ pM fqpc1, ..., cn; rq

c1 resembles the bitstring of the key used by the oracle, c2 resembles the bitstring of the nonce, c3 resembles the
bitstring of the header and c4 resembles the bitstring of the message. c11 resembles the bitstring of the the random
value which was picked by B instead of the original key (which is unknown to B)
This change produces encryptions like in Game 1 if b ““ 1 (if the oracle produces encryption of the message) and
produces encryptions like in Game 2 otherwise (The oracle produces encryptions of a random string).

2q How to parse bitstrings.
For B to be able to deal with adversarial encryption under honest keys, the openAEAD function has to be modified.
Concretely, the openAEAD function

if pxk, τkhAEADy, k
l
hpqq P L then

let m :“ ODeck pconSpnq, H, c
1q

else
parse k̂ as xk, τkxAEADy
let m :“ DAEN.Decpk, conSpnq, H, c

1q

end if
is inserted instead of the original line

parse k̂ as xk, τkxAEADy
let m :“ DAEN.Decpk, conSpnq, H, c

1q

So B simply uses the decryption oracle in the simulation instead of the key to decrypt (For DAEN secure schemes this
should be same concerning decryption).
Further observation:
– Using the openAEAD function, any adversary A that learns the bitstring representation of an honest key (with non-

negligible probability) is able to win the DAE-N game with non-negligible probability:
If openAEAD is called with input c P JτkhAEADKAEAD ( LJcK “ xk, τkhAEADy ), B will parse c as xk, τkhAEADy, pick
a random message m $

ÐÝ t0, 1uη and compute x :“ DAEN.Decpk, conSpnq, H,O
enc
k pconSpnq, H,mqq. If x is the

message (x ““ m), B knows that real encryption/decryption is used and sends ”guess 1” to the DAE-N game. This
leads B to win the DAE-N game with overwhelming probability.

– At this point, we require 4q of the validAEAD predicate to hold. If this would not be the case, an adversary A
could trivially win the oracle based DAE-N game by querying the same pair of IV, header and message twice. Since
encryption is deterministic, the same oracle would produce the same cyphertext in both queries if its a real oracle
and different cyphertexts in the other case.

3q Analysis and conclusion
We can split the analysis in two cases: The oracle produces real encryptions iq or the oracle encrypts random bitstrings
iiq:
iq The oracle produces real encryptions:
ñ B simulates Game 1 for A despite having random values instead of the honest keys in the library L.
A can only detect a difference if
˚ A guesses one of the random bitstrings, or
˚ parses a bitstring belonging to a key of Game 1.

The first case can only happen with negligible probability depending on η, while the second case would lead to B
winning the DAE-N game with overwhelming probability as described in the parsing paragraph above.
ñ If the oracle produces real encryptions, A cannot distinguish the simulation.

iiq The oracle produces ”fake” encryptions:
B simulates Game 2 for A perfectly, meaning every correct guess of A in distinguishing the two games leads to B
winning the DAE-N game.
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So we see that every correct guess of A in distinguishing Game 1 from Game 2 leads to B guessing correct in the
DAE-N game. But because of the scheme being DAE-N secure this can only happen with negligible probability
ñ A cannot distinguish Game 1 from Game 2.

F.6 Game 3
In this game we also add another deduction rule to our deduction system to allow the adversary to get encryptions of
chosen messages under honest keys. We add

conSpnq H m

Ehpklhpq, conSpnq, h,mq

to the deduction system. Additionally, we define $2 as the deduction relation of Game 2, where the relation is based on
the deduction system D2 “ D Y DAEAD Y Dtran. Further we define $3 as the deduction relation of Game 3, where the
relation is based on deduction system D3 (Which is the same as D2, despite the rule that was added above).
The idea behind this game is to use the authenticity of the encryption scheme. We show that an adversary which can
distinguish between Game 2 and Game 3 could be used to break authentication (A could forge a cyphertext).

F.7 Claim: Game 2 and Game 3 are indistinguishable
Intuition:
The idea behind this proof is to show that an adversary A that can craft a bitstring c, which can be parsed to a term t for
which it holds that S &2 t (t is a non-DY term in Game 2) and S $3 t (t is a DY term in Game 3), can be used to construct
a second adversary B which plays the DAE-N game. We first p1q show how to construct B and how B simulates A and
then p2q show how B can win the DAE-N game using A
p1q Construction of B:

B simulates Game 2 for A in a completely analogous way as in the proof above. Concretely, the way the init requests
are handled is perfectly analogous as well as the way the generate and openAEAD functions are altered. The simulation
from the proof above perfectly simulates Game 2, which means that adversary A should not notice any difference.

p2q In the case in which A sends a ”parse c” query to B such that c can be parsed to a term t (t :“ LJcK) and t is non-DY
in Game 2 (S &2 t) and DY in Game 3 (S $3 t) , we claim that t must contain a forged encryption under an honest
key, i.e., a term tf “ Ehpk

l
hpq, conSpnq, H,mq such that t P stptq but t R stpSq.

For contradiction, we assume t does not contain a forgery under an honest key and further let π be a proof for S $3 t.
By this assumption we can, first, remove all instantiations of the deduction rules

klhpq conSpnq H m

Ehpklhpq, conSpnq, h,mq
,

from our proof π, as A should not know any honest key due to the static corruption requirement. Second, all instances
of the deduction rule

conSpnq H m

Ehpklhpq, conSpnq, h,mq

can be removed, as they directly produce a forgery in the above sense. These removals would give us a new proof π1

which should be the same by our assumption (π1 is a proof for S $3 t). But π1 is also a proof for S $2 t, because the
only differences in the two deduction relations are the instantiations of the deduction rule

conSpnq H m

Ehpklhpq, conSpnq, h,mq

which are not part of π1. This on the other hand contradicts our initial assumption.
Hence,t must contain a forged encryption
Since c can be parsed, the library L contains t and all of the corresponding bitstrings to its subterms. If at some point
in time A generates an honest encryption, A must have guessed the random bitstring k1 (corresponding to the key k)
which was never used to generate/compute a bitstring sent to A before. Hence, this can only happen with negligible
probability.
This means A can create a forgery of encryption without knowing the bitstring of the key with overwhelming
probability. B then could use this forgery and send it to its decryption oracle. If the oracle returns K it means that the
oracle must be fake (because a valid encryption should be decrypted to a message “ K ) and B then sends a ”guess 0”
query to the DAE-N game instance and ”guess 1” otherwise. In this case B wins the DAE-N game with overwhelming
probability.

Due to our scheme being DAE-N secure, the probability of crafting a valid forgery should be negligible. Because the only
possibility to distinguish Game 2 and Game 3 is to craft a bitstring c which then is parsed to a term t with S &2 t and
S $3 t (Because the only difference in Game 2 and Game 3 is the deduction system/relation), it also holds that both games
are indistinguishable.
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F.8 Game 4
Intuition:

In this game a new adversary B plays the deduction soundness game for M and I and simulates Game 3 for A by
adding transparent functions to simulate authenticated encryption with associated data.

We first define a transparent symbolic model for authenticated encryption with associated data. Second we show how
to convert terms used in MAEAD and map them to their corresponding terms in the transparent symbolic model.

Transparent symbolic model for authenticated encryption with associated data
For Mtran

AEADpνq we will use the same typeset and the same subtype relation as for MAEAD . The deduction system of
Mtran

AEADpνq is the same as in B.3. We further describe the signature ΣtranAEAD in the following:
‚ deterministic fklxpq

ar(fklxpq) = τkxAEAD for all labels l P ν .
‚ deterministic fconSpnq

ar(fconSpnq) = τnAEAD for all n P S.
‚ deterministic fconSp¨q

ar(fconSp¨q) = J Ñ τnAEAD.
‚ deterministic fEhpklhpq,conSpnq,H,rq

ar(fEhpklhpq,conSpnq,H,rq) = τ cipherAEAD for all labels l P ν , n P S and r representing a random bitstring.
‚ deterministic fEhpklhpq,conSpnq,¨,¨q

ar(fEhpklhpq,conSpnq,¨,¨q) = JˆJ Ñ τ cipherAEAD for all labels l P ν and n P S.
‚ deterministic fEcpklcpq,conSpnq,¨,¨q

ar(fEcpklcpq,conSpnq,¨,¨q) = JˆJ Ñ τ cipherAEAD for all labels l P ν and n P S.
where ν is an encoded triple (l, k, k1) with l P labels, k being a symmetric key and k1 being a value representing honest
keys in the library.
Now we specify the corresponding transparent implementation ItranAEADpνq. We use the bitstring mapping and the length
function of IAEAD . We also take the open function and the valid predicate from B.3. We now define the Turing machine
Mtran
AEAD for ItranAEADpνq:
‚ (Mtran

AEAD fklxpq)(r) returns xk1, τkxAEADy
‚ (Mtran

AEAD fconSpnq)(r) returns xn1, τnAEADy
‚ (Mtran

AEAD fconSp¨q)(r) returns (MAEAD conS)(xn,Jy)
‚ (Mtran

AEAD fEhpklhpq,conSpnq,H,rq)(r) returns (MAEAD Eh)(xk, τkxAEADy, xn
1, τnAEADy, H, r) where r has the length of the

bitstring corresponding to m.
‚ (Mtran

AEAD fEhpklhpq,conSpnq,¨,¨q)(H, m, r) returns (MAEAD Eh)(xk, τkxAEADy, xn
1, τnAEADy, H, m)

‚ (Mtran
AEAD fEcpklcpq,conSpnq,¨,¨q)(H, m, r) returns (MAEAD Ec)(xk, τ

kx
AEADy, xn

1, τnAEADy, H, m)
Now we define the mode of operation func as follows:

(MtranAEAD func)(b):
if b == xk1, τkxAEADy for some (l, k, k1) P ν then

return fklxpq
if b == xn1, τnAEADy then

return fconSp¨q

if b P τ cipherAEAD then

parse b as xc, τ cipherAEADy

get nonce n’ and header h’ from c
for each (l, k, k1) P ν do

let m := AEAD.DEC(k, n’, H’, c)
if m “ K then

if l belongs to an honest key then
return fEhpk

l
h
pq,conSpnq,¨,¨q

else
return fEcpklcpq,conSpnq,¨,¨q

return K

The mode of operation proj shall be defined as in B.3.
Converting terms:
The adversary A uses function symbols f P ΣAEAD, so B has to map those function symbols to the corresponding function
symbols of ΣtranAEAD . To achieve this we define a function convert as follows:
‚ convert(f lpt1, ..., tnq) = f lpconvertpt1q, ..., convertptnqq

for all f R ΣtranAEAD.
‚ convertpklxpqq = fklxpq
‚ convertpEhpk

l
hpq, conSpnq, H,mqq = f

lpm,rq

Ehpklhpq,conSpnq,H,rq
where r has the length of the bitstring corresponding to m.
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‚ convertpEhpk
l
hpq, conSpnq, H,mqq = fEhpklhpq,conSpnq,¨,¨q(convertpHqqpconvertpmq)

‚ convertpEcpk
l
cpq, conSpnq, H,mqq = fEcpklcpq,conSpnq,¨,¨q(convertpHqqpconvertpmq)

Further we define that for a list of terms T convertpT q = tconvertptq : t P T u.
Simulation:

As already stated above, B simulates Game 3 for A while playing the deduction soundness game
DSMYpMtran

AEADpνqYMtranpν1qq,IYpItran
AEADpνqYItranpν1qqpηq. Because of Mtran

AEADpνq and Mtranpν
1q being both parameter-

ized transparent symbolic models we could compose them to one parameterized transparent symbolic model by definition
M1

tranpν}ν
1q since both ν and ν1 must be good. This also holds for the implementation analogously. We do not combine

them though for readability but we use it in the proof later on.
In the following we describe how the queries sent by A are handled by B:
‚ init

Initially, ν “ H. At first A sends ”T,H” to B and starts to fill ν; for each klxpq P T B generates a key k
$
ÐÝ

DAEN.Gen(1η, r) with r $
ÐÝ t0, 1uη . After this, B adds (l, k, k1) to ν where k1 is k if x = c and k1 $

ÐÝ t0, 1u|k| otherwise.
B then sends ν}ν1 to its game and queries ”init convertpT q, convertpHq”. After that, B also queries ”sgenerate klhpq”
for each klhpq P T .

‚ generate
For each ”generate t” request by A, B adds this request to T and also sends ”generate t” to its own game. The
response is then send to A again.
For each subterm t1 of t where t1 = Ehpk

l
hpq, conSpnq, H,mq is an honest encryption B also queries ”sgenerate

convertpmq”
The same strategy is used for ”sgenerate t” queries.

‚ parse
For each ”parse c” request by A, B sends ”parse c” to its own game and receives a term t1. B then converts t1 to t (t =
convert´1pt1q) and sends t back to A.

F.9 Claim: Game 3 and Game 4 are indistinguishable.
Intuition:
We now show that the simulation by B of Game 3 is indistinguishable for A from the original game. We will do this in two
steps: We first show that p1q every valid trace produced by A (in Game 3) leads to a valid trace by B (in Game 4) and call
them corresponding traces. Then we show that for all pairs of corresponding traces p2q the output is the same for Game 3
and Game 4. We achieve this using invariants that hold for a relation between the libraries of both games.
p1q We first show that any trace TA produced by A in Game 3 leads to a trace TB produced in Game 4 with validpTAq ñ

validpTBq. We do this in two steps: The application of the convert function is a variation described in requirement iq
of the valid predicates. Further, the additional ”sgenerate t” queries are a variation described in the valid predicates.
Thus, we see that both variation still lead to a valid trace and we see for any term t meeting the requirements of the
generate function in Game 3, convertptq meets the requirements in the

DSMYpMtran
AEADpνqYMtranpν1qq,IYpItran

AEADpνqYItranpν1qqpηq

game.
p2q Defining the invariants:

After showing the existence of the corresponding traces, we now have to show that the output of Game 3 and the
simulation is the same. We start doing so by defining an invariant.
We assume that the same random coins are used for Game 3 and the simulation. We can do this w.l.o.g. by observing
that B and A are using the same amount of randomness to generate keys and that all other uses of random coins
coincide. With this we can now define the two invariants:
iq dompLbigq “ dompLsmallq
iiq @c P dompLsmallq : convert´1pLsmallJcKq “ LbigJcK

where Lbig is the library in Game 2 and Lsmall the library in the simulation.
We now show that the invariants hold for all distinct queries done in both games:
‚ Initially

Initially, Lbig “ Lsmall “ H so both invariants hold obviously.
‚ init T, H

We can divide t P T YH into three types according to the validAEAD requirements 2 and 3:
– t “ klhpq (convertptq “ fklhpq)
– t “ conSpnq (convertptq “ fconSpq)
– t does not contain any function symbol f P ΣAEAD (convertptq “ t)
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We see that for all nonces t “ consSpnq that are generated in the big game, B adds convertptq to its init request
which leads to both invariants being fulfilled. We also observe that for each term t “ klhpq in the big game, B adds
convertptq to its init request. Doing so leads to

dompLbigztpc, k
l
hpqq : c P JτkhAEADK, l P labelsHuq “ dompLsmallq

because both generated keys coincide but in the small game the key is not added to the library. The invariants still
hold because in the small game , B uses sgenerate queries to add the fake keys corresponding to the real keys to the
library.
Thus, for the init query both invariants hold.

‚ generate t
Assuming our invariants hold for both libraries Lbig and Lsmall, we now show that they still hold after a valid
”generate t” query by A.
In the big game we have that

pcbig, L
1
bigq :“ generateMbig,Rpt, Lbigq

while we have

pcsmall, L
1
smallq :“ generateMsmall,Rpconvertptq, Lsmallq

in the small game. Note that there might be additional generateMsmall,R calls if t contains honest encryptions under
honest keys.
Again with a case distinction over t we show that our invariants still hold.
– Mbig and Msmall are never called for kx and the transparent version of kx, respectively (according to requirement 2

of the validAEAD predicates). Therefore, both invariants hold for this case.
– For a term t “ Ehpk

l
hpq, conSpnq, H, rq being an honest encryption, we would call

pcbig, L
1
bigq :“ generateMbig,Rpt, Lbigq

in the big game whereas we would call
pcsmall, L

1
smallq :“ generateMsmall,RpfEhpklhpq,conSpnq,H,rqpk

l
hqpconSpnqqpHqpmq, Lsmallq

and pcsmall, L1smallq :“ generateMsmall,Rpm,Lsmallq
in the small game. Since both resulting bitstrings coincide, both invariants also hold in this case.

– For all other terms t all keys that are already in library are removed from t by applying the convert function on t
but no other changes are done, hence both generated bitstrings coincide. Concluding, both invariants hold.

This works analogously for ”sgenerate t” queries.
So we see that our invariants hold for L1big and L1small, implying that the response sent to A is c = cbig = csmall, i.e. the
same response in both settings.

‚ parse c
Assuming our invariants hold for both libraries Lbig and Lsmall, we now show that they still hold after a valid ”parse
c” query by A. We can show this by observing the cases of c:
If c P dompLbigq there are no changes in L and due to the invariant iiq the response will be the same in both games.
The other case, where c R dompLbigq (meaning if we have to parse an unknown bitstring) can be reduced to observing
the open functionality in respect to JTAEADK, because both implementations should be type-safe (so we do not need
to care about foreign bitstrings). Thus, because both open functions handle those queries the same way (Concretely,
they only handle them the same way by applying conversion) our invariants still hold.

F.10 Claim: If A wins, then B wins Game 4.
1q We first showed that playing the original deduction soundness game

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq

from Game 0 is indistinguishable to Game 3.
2q In the last proof we have shown that Game 3 and Game 4 are indistinguishable, meaning due to the invariants from

above, we know that for every bitstring sent by A, c is parsed as t in the big game and hence parsed as convertptq in
the small game. This shows, by checking both deduction systems, that if t is non-DY convertptq is also non-DY. This
would be a contradiction to I being a deduction sound implementation of M
Therefore, A can win Game 3 only with negligible probability.

Taking 1q and 2q into account we see thatA can win Game 0 only with negligible probability which concludes our proof.
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APPENDIX G
FORGETFULNESS

The drawback of the Theorem 1 and the theorems proven by Böhl, Cortier, and Warinschi [8] lies in the valid predicates,
which forbids that keys are used in non-key positions; this means that keys cannot be sent around, i.e. key wrapping is
forbidden by validAEAD .

Because deduction soundness does not guarantee that no information about non-DY terms, e.g. a few bits of an used
nonce, is leaked by the implementation, Böhl, Cortier, and Warinschi [8] introduced forgetful symbolic models and imple-
mentations. Intuitively, we mark positions in the forgetful symbolic model as forgetful and the forgetful implementation
guarantees that no information about arguments, except their length, at those forgetful positions is leaked to the outside.

For this paper to be self-contained, we will first recall the definitions by Böhl et al. Afterwards, we extend our
contribution by also showing forgetfulness for (deterministic) AEAD, which puts a large class of protocols (protocols
using key wrapping, key exchange protocols) in the scope of our result.

G.1 Review: preliminaries
In this section, we will simply adopt all the needed preliminaries and in the following section the definitions concerning
forgetfulness from Böhl, Cortier, and Warinschi [8]. Böhl et al.extend the previous setting as follows.
‚ Changed hybrid terms for function symbols with forgetful arguments.

Let f be a function symbol f P Σ with arity arpfq “ τ1 ˆ ... ˆ τn Ñ τ . Let fpa1, ..., anq be the corresponding hybrid
term where each ai is either a bitstring with ai P JτiK as usual or a term with typepaiq “ τi for the forgetful position i.
The definition of completeness of a library as well as the definition of LJcK has to be changed to adapt to the change
above.

‚ New valid requirements
We introduce a new signature Σvalid which features function symbols with forgetful position. We change the valid
requirements, such that they use Σvalid in the following way:
piq If valid(T ` q) = true then for any variation q̂ of q, which we define explicitly below, it holds that valid(T ` q̂) =

true.
If q = ”generate t” and q̂ = ”generate t̂”:
Here, a variation t̂ of t is defined as follows: Any subterm f lpt1, ..., tnq of t where f is a foreign function symbol, i.e.
f R ΣYΣvalid, can be replaced by f̂ l̂pt̂1, ..., t̂nqwhere f̂ is another foreign function symbol and for all i P t1, ..., nu t̂i
is either tj for some j P t1, ..., nu (where each tj can only be used once) or t̂i does not contain any function symbols
from ΣY Σvalid. As a special case, if for example f̂ is ”empty”, we may replace f lpt1, ..., tnq with a term t̂1.
If q = ”init T,H” and q̂ = ”init T̂ , Ĥ”:
T “ pt1, ..., tnq and T̂ “ pt̂1, ..., t̂nq where for each i P t1, ..., nu t̂i is a variation of ti; and H “ ph1, ..., hmq and
Ĥ “ pĥ1, ..., ĥmq where for each i P t1, ...,mu ĥi is a variation of hi.

piiq If valid(T ` q) = true and t is a term which occurs in q, then valid(T` ”sgenerate t1”) = true for any t1 being a
subterm of t and t1 not being a subterm of a forgetful position.

piiiq The evaluation of valid(T) can be done in polynomial time (in the length of trace T).

G.2 Review: Forgetful symbolic models and implementations
We call a symbolic model M a forgetful symbolic model if there are function symbols with forgetful positions, i.e. if there
are arguments of a function symbol which are marked as forgetful. To define the corresponding forgetful implementation
we need to introduce the oblivious implementation, which is defined like the implementation seen in Section B.2 but for all
forgetful positions, the inputs are natural numbers instead of bitstrings. More precisely, the input will be the length of the
actual input of the forgetful position.

Definition 10 (Oblivious implementation). Let M be a forgetful symbolic model. I “ pM, J¨K, len, open, validq is an oblivious
implementation of M if I is an implementation of M with a slightly changed signature: For each function symbol f P Σ with arity
ar(f ) = τ1 ˆ ...ˆ τn Ñ τ the signature of (Mf ) is θpτ1q ˆ ...ˆ θpτnq ˆ t0, 1uη Ñ JτK where θpτiq “ N if the ith argument of f is
forgetful and JτiK otherwise.

Review of Definition 8 by Böhl, Cortier, and Warinschi [8]

Let generateFIN be a generate function that also deals with forgetful arguments in the following way (Review of Figure
14 by Böhl, Cortier, and Warinschi [8]):

Listing 9: generateFIN

generateFIN
M,Rpt, Lq:

if for some c P dompLq we have LJcK ““ t then
return c

else
for i P t1, ..., nu do
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if i is a for getful argument then
let ci :“ lenptiq
let ai :“ ti

else
let pci, Lq :“ generateM,Rpti, Lq
let ai :“ ti

let r :“ Rptq
let c :“ pMfqpc1, ..., cn; rq
let Lpcq :“ f lpa1, ..., anqqpl P labesHq
return pc, Lq

Let FINb
Mpνq,Ipνq,Ipνq,Apηq be a game in which an adversary tries to distinguish if he interacts with a real implementation

I and an oblivious implementation I (Review of Figure 15 by Böhl, Cortier, and Warinschi [8]):

Listing 10: FIN game
FINbMpνq,Ipνq,Ipνq,A(η):

Let S := H

Let L := H

Lat T := H

R Ð t0, 1u˚

if b == 0 then
let generate := generateFIN

M,R
else

let generate := generateM,R

Receive parameter ν from A

on request "init T,H" do
add "init T " to T
if validpTq then

let S := S Y T
let C := H

for each t P T do
let pc, Lq := generatept, Lq
let C := C Y tcu

for each t P H do
let pc, Lq :“ generatept, Lq

send C to A
else

return 0 (A is invalid)

on request "sgenerate t" do
if validpT` ”sgenerate t”q then

let pc, Lq :“ generatept, Lq

on request "generate t" do
add "generate t" to T
if validpTq then

let S := S Y ttu
let pc, Lq :“ generatept, Lq
send c to A

else
return 0 (A is invalid)

on request "parse c" do
let pt, Lq := parsepc, Lq
if S $D t then

send t to A
else

return 1 (A produced a non-DY term)

on request "guess b1" do
if b1 ““ b then

return 1 (A wins)
else

return 0 (A loses)

where S is the set of requested terms, L is the library, T the trace of queries, R the random tape and C the list of replies.
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Definition 11. (Forgetful Implementation). We say that an implementation I “ pM, J¨K, len, open, validq is a forgetful imple-
mentation of a forgetful symbolic model M if there is an oblivious implementation I “ pM, J¨K, len, open, validq such that for all
parameterized transparent symbolic models Mtranpνq and for all parameterized implementations Itranpνq of Mtranpνq that are
compatible with (M, I) we have that

PrrFIN0
MYMtran,IYItran,IYItran,A

pηq “ 1s

´PrrFIN1
MYMtran,IYItran,IYItran,A

pηq “ 1s

is negligible for every p.p.t. adversary A.
(Review of Definition 9 by Böhl, Cortier, and Warinschi [8])
Thus we see that an forgetful implementation I as defined in Definition 11 is an implementation that is indistinguishable from an

oblivious implementation I (see Definition 10) of a forgetful symbolic model M.

Lemma 4. Let M be a forgetful symbolic model, I be an forgetful implementation of M and I a corresponding oblivious
implementation. If I is deduction sound, then I is deduction sound with respect to the deduction soundness game DS1 that uses
generateFIN instead of generate.

(Review of Lemma 5 by Böhl, Cortier, and Warinschi [8])

G.3 Solving the key wrapping problem
We now will extend our model (and its corresponding implementation) from Section D (and Section E) in a way, s.t. we
allow to send keys around. Therefore we have to change validAEAD to depend on Σvalid (See G.1). Additionally, we
replace requirement 3q of the validAEAD predicate with

3q iq For the query ”init T,H” it should hold that:
˚ the function symbol kc should only occur in a term klcpq P T .
˚ the function symbol kh should only occur in a term klhpq P H .

iiq For each label l of klx, l should be unique in T YH .
iiiq We demand that every time klxpq occurs in a generate query, klxpq must have occurred in the init query before.
ivq Except generation, klxpq should only occur in Ex as its first argument or as a sub term of f in a forgetful position

with f P Σvalid.
Further, we extend IAEAD to IAEADrΣvalids, an implementation featuring forgetful positions. Note that Σvalid needs to
be fixed at the time of composition.

Further note that if we, i.e. want to send AEAD keys around using authenticated encryption, we need to compose
(MAEAD , IAEAD) with (M1

AEAD , I 1AEADrΣAEADs) where
1) (MAEAD , IAEAD) are forgetful regarding the message position of the encryption function symbol Ex,
2) ΣAEAD the signature of MAEAD and Σ1AEAD of M1

AEAD

3) and the valid predicate of IAEAD does not depend on function symbols of Σ1AEAD.
Intuitively, the third point prevents key cycles by stating that dependencies in the valid predicates can only be one-directed,
allowing Ex to have key symbols of M1

AEAD in its fourth position, but forbids that key symbols of MAEAD can occur at a
non key position of E1x. We will generalize the composition to allow key wrapping of AEAD keys in Theorem 2 and show
that we can use authenticated encryption to wrap keys in Theorem 3.

Böhl, Cortier, and Warinschi [8] already proved forgetfulness of public key encryption and secret key encryption in respect
to the message position as a forgetful position. Now we want to show that we can send AEAD keys (and also other
bitstrings produced by IAEAD) using such forgetful implementations. This idea is concretized in Theorem 2.

Theorem 2. Let I be a deduction sound forgetful implementation of the forgetful symbolic model M and let IAEAD := IAEADrΣs
where Σ is the signature of M. If (M, I) is composable with (MAEAD , IAEAD) and if valid (of I) does not depend on ΣAEAD ,
then I Y IAEAD is a deduction sound implementation of MYMAEAD .

Proof. Instead of the five different games used in the previous proof of Theorem 1, we will include another game, so we
have to show indistinguishability between six games. In this additional game we will replace the forgetful implementation
I of the forgetful symbolic model M with its corresponding oblivious implementation I . This gives us an additional
guarantee: If an adversary A sends the request ”generate t” with honest keys at a forgetful position of t to the DS game
then we know that the bitstring interpretations of those honest keys are not used to compute the bitstring corresponding
to term t.
Our strategy in proving Theorem 3 will stay the same as in the proof of Theorem 1: We will describe the games and show
that they are indistinguishable from each other. For completeness we will also describe the games that do not differ from
the proof of Theorem 1.
Game 0 As in proof 1, in this game the adversary A plays the original deduction soundness game from B.5.

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq
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Game 1 In Game 1, we replace I by the corresponding oblivious implementation I . By Definition 3 I must exist and
I must also be composable with IAEAD . We also replace the function generate with generateFIN from listing 9. The
adversary A then plays

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνq
pηq

Claim: Game 0 and Game 1 are indistinguishable To prove that Game 0 is indistinguishable from Game 1 for A, we
first construct an adversary B who plays

FINb
MYMtran1 pν

1q,IYItran1 pν
1q,IYItranpν1q,A

pηq

and simulates Game b for A with b P t0, 1u. B simulates IAEAD using transparent functions and checks the validity of A’s
requests like it would be done in Game 1. This simulation is perfect since B uses transparent functions to simulate IAEAD
and therefore knows all generated terms and does not need to hide any sub terms.

If A could distinguish between Game 0 and Game 1 and would return b1 to B (where b1 is A’s choice in distinguishing
the games), then B would simply send a ”guess b1” request to its own game and win with non-negligible probability. But,
B can only win its game with negligible probability according to Definition 11. Therefore: A can only distinguish between
Game 0 and Game 1 with negligible probability.

Game 2 In this game we replace the generateFIN function in the deduction soundness game by the collision aware
version (like in Game 1 from F.2).

Claim: Game 1 and Game 2 are indistinguishable The proof of indistinguishability is completely analogous to the
proof in F.3.

Game 3 In Game 3 we make similar changes to those of Game 2 from F.4. We take the adversary’s option of learning
something from cyphertexts or about honest keys, by replacing the cyphertexts created under honest keys with random
bitstrings. We abstract from just using random bitstrings by using encryptions of random bitstrings under the same keys
(because the adversary still needs the possibility to retrieve the nonce and the header) and also replace all honest keys in
the library by random bitstrings with the same length as the keys. Because of the properties of the AEAD secure scheme,
A should not notice any difference between Game 2 and Game 3.

The concrete changes are completely analogous to those in F.4.
Claim: Game 2 and Game 3 are indistinguishable In this proof, we will use the fact that we have to deal with I instead

of I . I guarantees that bitstrings representing honest keys are not used to generate other terms. So if we replace the keys
with random bitstrings, the games will be indistinguishable by construction. The rest of the proof is analogous to the proof
in Section F.5.

Game 4 In this game, we also give the adversary the possibility to produce honest encryptions of arbitrary messages.
The game is constructed like in F.6.

Claim: Game 3 and Game 4 are indistinguishable The proof of indistinguishability is analogous to the proof in F.5. But
we need to simulate IAEAD using transparent functions (for the simulator B) for which we need the fact that valid of the
forgetful implementation I does not depend on function symbols from ΣAEAD (what we demand in the valid predicate).
Game 3 and Game 4 are therefore indistinguishable, too.

Game 5 Game 5 is completely analogous to Game 4 from Section F.8. We create an adversary B who plays the deduction
soundness game for M and I and again simulates Game 4 for A by adding transparent functions to simulate authenticated
encryption with associated data.

Claim: Game 4 and Game 5 are indistinguishable We have to show that the simulation by B of Game 4 is indistin-
guishable for A from the original game. This can be done in two steps analogously to proof F.9. First one shows that every
valid trace produced by A (in Game 4) leads to a valid trace by B (in Game 5) and call them corresponding traces. Then
one can show that for all pairs of corresponding traces the output is the same for Game 4 and Game 5. Additionally we
use the indistinguishability of I from I stated in lemma 4. Analogously to proof F.9 Game 4 and Game 5 are therefore
indistinguishable.

Claim: If A wins, then B wins Game 5 Again, B can only win its game with negligible probability with the same
arguments as in F.10. Therefore A can only win Game 4 with negligible probability and since Game 4 is indistinguishable
from Game 0, the same holds for the winning probability of A playing Game 0.

We can conclude that I Y IAEAD is a deduction sound implementation of MYMAEAD .

Now we want to show that, if we mark the message position of encryption under AEAD as a forgetful position, we are
able to send keys around. Let MAEAD be a forgetful symbolic model which is based on MAEAD but for honest encryption
Ehpk

l
hpq, conSpnq, H,mqm is marked as a forgetful position. If we then pick IAEADrΣs as the implementation of MAEAD

the the following should hold:

Theorem 3. Let I be a deduction sound forgetful implementation of the forgetful symbolic model M and let IAEAD := IAEADrΣs
where Σ is the signature of M. If (M, I) is composable with (MAEAD, IAEAD), then I Y IAEAD is a forgetful implementation of
MYMAEAD.

Proof. Intuitively, we want to show that we can use encryption under AEAD to send keys around. Therefore, we have to
show that I Y IAEAD is a forgetful implementation of M YMAEAD . Using Definition 11 we simply have to show that
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no adversary A can efficiently distinguish between I Y IAEAD and I Y IAEAD where I is the corresponding oblivious
implementation of I and IAEAD the corresponding oblivious implementation of IAEAD . For IAEAD we further set the
application of the oblivious Turing machine on an honest encryption function symbols pMAEAD Ehqpk, n

1, H,mforgetq :=
pMAEAD Ehqpk, n

1, H, rq with r being a random value in the size of m.
Hence, we have to show that

PrrFIN1
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

´PrrFIN0
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

is negligible small.
We can prove that this equation holds, using an intermediate step.

Analogously to Game 1 from Theorem 2 we first only replace I with its corresponding oblivious implementation I . Since
I is a forgetful implementation, I must be composable with IAEAD , too. So, analogously to Game 1 we can show that

PrrFIN1
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

´PrrFIN0
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

is negligible in respect to the security parameter η. So finally we have to show that

PrrFIN0
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

´PrrFIN0
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

is negligible in respect to the security parameter η, too.
In this step we simply replace IAEAD with its corresponding oblivious implementation IAEAD and replace the keys in

the library by random bitstrings.
Since an adversary needs to break authentication of the implementation to be able to distinguish both games, what can
only happen with negligible probability since the scheme is DAE-N secure, the statement is valid.

Using both steps, we finally have shown that

PrrFIN1
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

´ PrrFIN0
pMYMAEADqYMtranpνq,pIYIAEADqYItranpνq,pIYIAEADqYItranpνq,A

pηq “ 1s

ď neglpηq

for some negligible function negl() and security parameter η.
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