
On the Soundness of Infrastructure Adversaries
Alexander Dax and Robert Künnemann

CISPA Helmholtz Center for Information Security
Saarland Informatics Campus

Abstract—Companies and network operators perform risk
assessment to inform policy-making, guide infrastructure invest-
ments or to comply with security standards such as ISO 27001.
Due to the size and complexity of these networks, risk assessment
techniques such as attack graphs or trees describe the attacker
with a finite set of rules. This characterization of the attacker can
easily miss attack vectors or overstate them, potentially leading
to incorrect risk estimation.

In this work, we propose the first methodology to justify a
rule-based attacker model. Conceptually, we add another layer
of abstraction on top of the symbolic model of cryptography,
which reasons about protocols and abstracts cryptographic prim-
itives. This new layer reasons about Internet-scale networks and
abstracts protocols.

We show, in general, how the soundness and completeness of
a rule-based model can be ensured by verifying trace properties,
linking soundness to safety properties and completeness to live-
ness properties. We then demonstrate the approach for a recently
proposed threat model that quantifies the confidentiality of email
communication on the Internet, including DNS, DNSSEC, and
SMTP. Using off-the-shelf protocol verification tools, we discover
two flaws in their threat model. After fixing them, we show that
it provides symbolic soundness.

I. INTRODUCTION

The Internet is the primary medium for distributing en-
tertainment, news and knowledge and an important pillar to
industrial commerce. It is constructed from service providers
interoperating according to several protocols. Many of them
were conceived before the Internet was even considered a Mass
Medium [43]; they were hence designed to be fast and service-
oriented, whereas security was a second thought. Trust between
service providers at different protocol layers is thus an implicit
assumption, making it difficult to estimate potential attacks’
impact.

High-profile attacks, e.g. on routing [39] or name resolu-
tion [44] are a painful reminder of these trust assumptions.
They also highlight the slow adoption of security protocols,
which were developed only post-hoc, to mitigate some of
these issues. Even for TLS [48], which enjoys high popularity,
adoption was and remains slow. According to Qualys Labs [35],
6% of all websites still support SSL 3.0, which is exploitable
in various manners and was deprecated in 2015. Moreover,
security protocols rely on trust assumptions and a complicated
interplay between routing, name resolution, and the application
layer. An example is RFC 7817 [42], which defines certificate
validation for email transport. It mandates that the certificate
contains the email domain (the part after the ’@’) and not just
the target server’s domain name, as a name resolution attacker
can easily manipulate the latter. Large-scale attacks thus rarely

exploit previously unknown flaws in a single protocol, but
instead target their deployment in the wild.

Despite the effort put into securing individual protocols
and cryptographic primitives in the past decades, worldwide
attacks like the Great Cannon [40] or spying systems like
PRISM [25] exploit weak components and (the absence of)
trust anchors in the infrastructure. To analyze an infrastructure
like the Internet, with broken legacy protocols, unstable trust
assumptions, and varying degrees of centralization on different
layers, a high-level approach is necessary.

Risk assessment originates in the formal assessment of
potential failures in large infrastructures like power plants.
Techniques like fault trees provide a systematic method for
identifying and minimizing potential risks. They were soon
adopted for IT infrastructure. These techniques usually consider
the severity of known vulnerabilities and some valuation of
critical assets. The problem size grows with the size of the
network. Therefore, most of these techniques formalize the
threat model as a set of rules. Those techniques include
planning, attack graphs (which were derived from fault graphs),
and game-based models.1

While these analyses are formal and well justified, the
rules themselves are not formally justified. It is not safe
to assume that the set of rules is comprehensive. Thus the
analysis may miss potential attack vectors. There is a surprising
similarity to the soundness of the Dolev-Yao model. Abadi
and Rogaway’s seminal paper on computational soundness [2]
considered the soundness of a such a rule-based symbolic
attacker on protocols in the computational model. Likewise,
our focus is on the soundness of a rule-based attacker,
the infrastructure attacker (IA), but in the symbolic model
instead of the computational model. In both cases, the need
for further abstraction is driven by the complexity of the
problem (infrastructure analysis/protocol analysis) but requires
justification.

Contributions

1) We define proof obligations for the correctness of an
infrastructure attacker in the STRIPS framework for
planning as a set of trace properties. We show that
soundness can be proven by verifying safety properties,
and correctness by verifying liveness properties.

2) We apply this definition to an IA model for email
communication [52] and establish its soundness (barring
some minor flaws).

1For other techniques, consider the study by Wang et al. [55].

ar
X

iv
:2

10
5.

06
73

1v
1

 [
cs

.C
R

]
 1

4
M

ay
 2

02
1

3) We show how to automate the proof of this trace properties
by over-approximating all possible instantiations of the IA
model with a single process. The protocol transformations
we introduce to this end are of independent interest, as
they can help to reduce drastically the size of processes
that model an adversary with limited access to network
traffic.

4) We show various authentication properties of SMTP in
conjunction with DNS, DNSSEC, and a simple resolver
model in ProVerif. As a by-product, this model provides
the first automated verification result for authentication in
DNSSEC.

II. RELATED WORK

1) Risk assessment techniques: The most popular techniques
for the analysis of IT infrastructure are attack graphs [56]
and trees[49], see [38] for a recent survey. They originate in
risk assessment and reliability analysis for critical infrastruc-
tures. Fault tree analysis [16] was used, e.g. for analyzing
nuclear power plants or military missile control systems.
Attack graphs and trees have been used to assess risks in
forensic examination [37], network security [34, 47] or cloud
infrastructures [3]. Used naı̈vely, both techniques suffer from
the state explosion property. Luckily, a large body of work is
devoted to improving performance, e.g. generating of minimal
attack graphs [24], distributing attack graph generation [32] or
the efficient representation of network defenses [30].

More recently, planning was considered as an alternative
technique with great benefits in terms of performance [23].
Planning is one of the oldest sub-areas of AI and benefits from
being a well-studied research field with a large community
and a focus on optimizing performance. Compared to various
semantics for attack graphs, there is a fairly wide agreement on
the STRIPS framework [21]. Planning was used for attack graph
generation [26], network analysis [12], penetration testing [45],
and internet infrastructure analysis [53]. Additionally, the
popular attack graph formalism can be translated into a planning
problem [29].

2) Infrastructure analysis: Until recently, these approaches
were used to analyze local networks or the public infrastructure
unrelated to information security. Presumably, this was due
to the problem size associated with large-scale infrastructures
like the Internet. Frey et al. [22] conducted one of the first
Internet-scale infrastructure assessments in terms of security
evaluation. They investigated the Border Gateway Protocol
deployment looking into potential threats and vulnerabilities.
Simeonovski et al. [51] present a technique that models services,
providers, and dependencies on the Internet as a property graph,
establishing a high-level IA model. This model is used to
reason about dependencies between services and infrastructure
providers and how these dependencies can be exploited to
impact a large amount of end users. They conduct a large-
scale case study by using a simple tainting-style propagation
technique in a graph database highly optimized for reachability
queries. They studied several attack scenarios like email-
sniffing and DDOS caused by the distribution of malicious

hardness assumptions (e.g. DDH)

cryptographic definitions (e.g. CCA2)

trace properties (e.g. authentication)

quantitative analysis results

cryptopgraphic proof

computational soundness

symbolic soundness

Fig. 1: Relation between different levels of abstraction

JavaScript. More recently, Speicher et al. [52] introduced the
first deployment analysis on a global level, evaluating various
measures to secure the email infrastructure against large-scale
attacks. They employ Stackelberg planning [53], which is a two-
stage planning technique that computes all defender plans that
are Pareto-optimal with respect to their cost and the worst-case
impact of an attacker.

To our knowledge, all these assessment approaches have
only informally justified their threat models. Given the high
abstraction level of their reasoning, validation using formal
analysis techniques is necessary. Sheyner et al. [50] propose
the use of symbolic model checking to generate attack graphs
from a finite state machine that represents the network. Here,
state transitions correspond to atomic attacker steps which
themselves require justification. This approach is neither
applicable to larger networks (because of the aforementioned
state-explosion property) nor does it provide the desired level
of justification (as network attackers are too complex for finite
state machines).

3) The analogy to computational soundness: In contrast to
cryptographic primitives like encryption or signatures, larger
cryptographic protocols are typically analyzed in the Dolev-
Yao model [19], where cryptographic primitives (short: crypto
primitives) are abstracted with a term algebra. Proofs in the
computational model are possible, but become prohibitively
complex due to the need to reason about probabilistic behavior
and runtime. Mechanization becomes incredible difficult [8]
and manual proofs can easily miss details. By contrast, the
abstraction of cryptography by a term algebra has enabled the
development of fully automatic and semi-automatic protocol
verifiers [10, 41] that can handle highly complex protocols,
e.g. TLS 1.3 [9, 18].

To bridge both worlds, Abadi and Rogaway [2] introduced
computational soundness, justifying the use of the symbolic
model for protocol analysis. Gaining the advantages of automa-
tion in the symbolic model, and the stronger guarantees of the
computational model, the notion of computational soundness is
seen as a massive milestone in protocol verification. With this
work, we want to extend on this stack in an analogous fashion,

computational sound. symbolic soundness

threat model network attacker infrastructure att.
assumption perfect cryptography perfect protocol
high-level
semantics

term algebra + process
calculus

planning (STRIPS)

low-level
semantics

probabilistic Turing
Machines

term algebra + pro-
cess calculus

Proof strategy
Fix a set of crypto primitives protocols
conforming to crypto definitions

(e.g. CCA2 for
Cramer-Shoup).

trace properties
(e.g. authenticity for
TLS).

For all protocols network topologies
map each computational traces protocol trace
from comp. executions (in-

terpreted by TM)
processes (compiled
from the topology)

to a (symb.) protocol trace. plan.

TABLE I: Comparing computational soundness and symbolic sound-
ness.

and introduce the notion of symbolic soundness relating the
infrastructure adversary to the symbolic model in a similar
fashion. This is depicted in Fig. 1.

To attain this goal, we lift this approach from the protocol
level to the infrastructure level. To readers familiar with
computational soundness, Tab. I can help to support this
analogy.

We formalize the IA model as a planning problem in the
STRIPS formalism [21]. The rules represent an infrastructure
attacker that can selectively corrupt parts of the infrastructure,
but assumes that protocols themselves are secure. Dolev-
Yao models, by contrast, represent a network attacker, but
assume the crypto primitives to be perfect. To reason about
the validity of the model w.r.t. those assumptions, they need
to be formalized. As they are implicit in the respective
semantics (STRIPS / process calculus with term algebra), a
low-level semantics is necessary to state these assumptions.
Assumptions about protocols are stated in the Dolev-Yao
model, usually within a process calculus with a term algebra.
Assumptions about cryptographic primitives are stated as
asymptotic probability bounds on the probability of a runtime-
bounded Turing machines winning some game.

Symbolic soundness asserts that, when compiling a given
infrastructure model into a process, all symbolic traces that
this process allows can be mapped to attacker plans in the
planning model. This is structurally similar to computational
soundness, which ensures that no computational attacks are
missed by mapping all computational executions to symbolic
traces (with a negligible failure probability). We can thus
show that no symbolic attack is missed by the IA model,
provided the protocols are working as intended. To be clear:
symbolic soundness does not imply computational soundness,
but both combine. If a symbolic soundness result asserts
the absence of attacks w.r.t. to some symbolic model, then
a computational soundness can extend this result to the
computational model of cryptography. This requires that the

computational soundness result supports the cryptographic
primitives and process calculus used by the symbolic soundness
result.

Much like results in computational soundness, symbolic
soundness results apply to a fixed set of primitives, in their
case: protocols. We model an infrastructure consisting of
DNS, DNSSEC and SMTP, using a dialect of the applied-
π calculus [1].

4) Symbolic completeness and liveness properties: In con-
trast to computational soundness, the completeness of an IA
model is equally important to the analysis. A quantitative
analysis, e.g. counting the number of affected hosts, is
incorrect if the IA model overestimates the protocol attacker’s
capabilities. In the case of Stackelberg planning, this might
lead to the proposition of suboptimal countermeasures and, if
the defender budget is fixed, to an allocation that is not optimal
for security. We therefore define symbolic completeness and
show a set of conditions that implies the completeness of
this model. Unfortunately, one of these is a liveness property,
i.e., a property of the form: ‘the [protocol] eventually enters
a desirable state’ [36]. Practically all protocol verification
tools [10, 41, 17] in the unbounded model cover only safety
properties, i.e., properties of the form ‘the protocol never enters
a bad state’. Hence, there is currently no support for the
verification of liveness properties such as ours. We further
elaborate on this topic in section IV-C.

5) Analysis of DNSSEC: To our knowledge, our case study
provides not only the first automated result w.r.t. an infrastruc-
ture attacker, but also the first automated verification result
for DNSSEC. Chetioui et al. [14] investigate (weak) secrecy
in E-DNSSEC, a variant of DNSSEC that adds encryption,
in ProVerif. Kammuller [31] also cover authentication in a
handwritten, but automatically verified proof in Isabelle/HOL.

III. BACKGROUND: AUTOMATED PLANNING

A planning task is usually described in the STRIPS frame-
work [21]. Here, Π “ pP, I,A,Gq is defined over a high-level
representation of the world in which each state σ is built
over a set of state propositions P . I Ď P is the initial state
and the task is to reach a goal states in G Ď 2P . A set of
actions A over P defines transitions between states. Actions
are described as a triple (pre, del, add) where pre Ď P is
the set of preconditions needed in the current state to make
the action applicable, del Ď P tells which proposition will be
deleted in the transition to the next state whereas add Ď P
tells which propositions are added. In classical planning, we
assume that all actions have a deterministic effect and that the
initial state of the world is known from beginning. A state σ
is reachable from I , if there is a sequence of actions a0 ¨ ¨ ¨ ak,
which can be applied to I one after another resulting in σ. We
call this sequence of actions a plan π to reach σ. The basic
idea behind planning is to find a sequence of actions, s.t. their
application starting from the initial state I leads to one of
the goal states in G. Speicher et al., e.g., consider the initial
state as the nodes that an attacker controls from the start, e.g.,
different nation-state adversaries or companies abusing power.

Goal states are valuable assets that need to be protected, e.g.,
the largest mail providers within some country. Over the years,
several variations of automated planning have been developed,
with different modeling assumption and resulting complexity
classes for plan existence, worst-case runtime, etc.

We focus on classical planning for the ease of presentation.
Our approach easily transfers to probabilistic planning when
considering uncertainty about the initial set-up or effect proba-
bilities as model parameters. We cannot justify these parameters
via protocol verification (which is typically possibilistic) or
cryptographic reasoning in general. These parameters model
uncertainty about the attacker’s capabilities and intentions.
They are thus outside the current scope of formal analysis in
security. Our infrastructure attacker is described by actions
that have only positive preconditions and postconditions, i.e.,
they are described as pairs ppre, postq P P2 instead of tuples
ppre, del , addq. Such planning tasks are called delete-relaxed
or monotonous and are easier to solve. Delete-relaxed planning
aligns with the implicit assumption that attackers only gain
assets in attack graph analysis [5].

Stackelberg planning [53] elevates this form of analysis to
a two-player planning task in an attacker/defender scenario.
In this scenario, the defender tries to implement mitigation
strategies to limit the impact of the worst-case attacker strategy.
A Stackelberg planning task differs from a classical task by
dividing the set of actions into leader (or attacker) actions
AL and into follower (or defender) actions AF . Further,
the goal states are now defined for the defender, namely
defender/follower goals GF . In this setting, an attack is
composed of attacker actions, but applies to a world state
where the defender has applied a plan composed of defender
actions to the initial state. Every attack is annotated with
some attacker reward, which depends on the severity of the
attack (e.g. number of corrupted connections due to the attack).
Defender actions come with a cost. The Stackelberg planning
algorithm computes the set of Pareto-optimal pairs of attacker
and defender plans. For the soundness of the attacker model,
it is enough to consider the classical planning task where the
follower actions are removed and only the attacker goal is
considered, but the initial state can be any state reachable via
defender actions. In our analysis, the initial state is, in fact,
arbitrary.

IV. SYMBOLIC SOUNDNESS AND COMPLETENESS

We introduce the concepts of symbolic soundness and
symbolic completeness, which relate the infrastructure adversary
model (formalized as a planning problem) to the Dolev-Yao
model [19]. Our approach applies to security properties that
can be expressed as trace properties. We start by introducing
the necessary notation and concepts. Then we introduce the
conditions under which symbolic soundness and symbolic
completeness hold. Finally, we prove these statements.

A. Notation

For a sequence s P Σ˚, let setpsq be the set of elements
in s. For e P Σ, s ˝ e denotes the concatenation with e. For

S Ď Σ, s|S is s with every element outside S removed.
The IA model is formalized in terms of a finite set of plan-

ning actions. We define postseqpπq “ post0, post1, . . . , postn
to be the sequence of postconditions of some plan π “

ppre0, post0q, . . . , ppren, postnq. We define a planning trace
of some plan π as a sequence pt “ s1, s2, . . . , sn, where for
all i P t1, . . . , nu, si P permppost iq is some permutation of
post i. If all postconditions in π are singleton sets, it has only
one pt . Let T Πpσq be the union of all planning traces reaching
σ, and (with slight abuse of notation) T Π Ď P˚ denote the
union of planning traces over all states.

For generality, symbolic soundness and completeness are
formulated independent of the process calculus. We assume
a set of traces of form traces “ Events˚ that represents
the possible behavior of a protocol and is usually specified
by encoding it into a process. To simplify the presentation
and avoid introducing a mapping function, we assume a non-
empty intersection between predicates P and events Events .
Our aim is to match planning traces and protocol traces on
this intersection, which we denote by ΣX. Typically, the
predicates/events in this set signify the corruption of some
party or the partial compromise of certain infrastructure services
(cf. Table III for examples). We hence call them corruption
predicates.

Definition 1. «-equivalence
Let «“ pT Π Y tracesq2 s.t. s « t ðñ s|ΣX = t|ΣX .

When all predicates P are contained in ΣX, our approach
can be seen as a refinement, where planning traces provide an
abstract view on protocol traces.

B. Symbolic Soundness

We define the symbolic soundness of a planning task w.r.t.
a set of traces. We will then provide sufficient conditions for
this property. Two of them can be checked statically on the
planning problem; the third holds for most process calculi. The
fourth induces a set of trace properties that can be discharged
to protocol verifiers. We say that a planning task is sound if
any behavior of the protocol, e.g. an attack, is represented in
the planning task.

Definition 2 (Symbolic Soundness). A planning task Π is
symbolically sound w.r.t. a set of traces T Ă Events˚, if for
every trace t P T , there is a planning trace pt P T Π s.t.
pt « t.

Symbolic soundness provides guarantees with respect to the
Dolev-Yao model. In case the Dolev-Yao model (represented
by T) is covered by a computational soundness result, these
guarantees may translate to the computational model, but a pri-
ori, these are guarantees in a symbolic model of cryptography.
We now state and discuss sufficient conditions for soundness
for an arbitrary but fixed planning problem Π “ pP, I,A,Gq
and a set of traces T .

CS 1. All postconditions are singleton.

@a “ ppre, postq P A : |post | “ 1

Discussion. This condition is true w.l.o.g. for all monotonic
planning tasks [13] whose postconditions are positive. Any
action with n ą 1 postconditions a “ ppre, tc1, ..., cnuq can
be split into n actions ai “ ppre, tciuq without losing com-
pleteness or soundness. Since we never delete any information
from the state, each plan where a occurs can be recovered by
substituting a with the sequence a1, . . . , an. Conversely, we
can apply a whenever any plan contains some ai.

CS 2. All corruption predicates are reproducible in the
planning model.

@e P ΣX.Dppre, postq P A : post “ teu

Discussion. This condition is largely technical. Note first that
post is singleton by CS 1. The set of corruption predicates ΣX
should be chosen to represent all events where planning traces
and protocol traces ought to match. Hence the planning model
must be able to produce them. Furthermore, any planning task
can be transformed so that all predicates in P appear in some
action’s postcondition: we let I “ H and add an action that
reaches the initial state. Now all actions with preconditions
that do not appear in any postcondition can be removed and P
be set to the union of postconditions. As ΣX Ď P , this implies
CS 2.

CS 3. The set of traces is prefix-closed. For any k ą 0

@e1, . . . , ek.pe1, . . . , ekq P T ùñ pe1, . . . , ek´1q P T

Discussion. This condition concerns the semantics of the
process calculus. It holds for ProVerif [10], Tamarin [41] and
Scyther [17].

CS 4. The production of predicates in ΣX is not dependent
on predicates outside of this set.

@post P ΣX.@ppre, tpostuq P A.@f P pre : f P ΣX

Discussion. The corruption predicates ΣX are used to describe
the security model in both languages. With this condition we
restrict the model to independent of predicates outside of ΣX.
We refrain from forbidding predicates outside of ΣX in the
planning model as they appear to be useful in quantitative
tasks. For instance, counting occurrences of specific corruption
predicates can be essential in a quantitative analysis. Such a
model would be depended on predicates in ΣX but not vice
versa.

CS 5. Let A “ Ac1 ZAc2 Z ¨ ¨ ¨ ZAcn be the set of actions,
partitioned into disjunct sets Aci , where there is exactly
one set per postcondition tciu. (By CS 1, all postconditions
are singleton.) We assume that, whenever a postcondition ci
appears in a trace, then a matching precondition appears, too,
namely the precondition of some action in Aci .

@i P t1..nu, t P T : ci P t^ ci P ΣX ùñ

Da “ pprei, tciuq P Aci : @g P prei : g P t.

Discussion. This property is a safety property and can be
shown using any protocol verifier that handles correspondence
properties, e.g. Tamarin [41] or Scyther [17]. In Section VIII,
we use ProVerif [10] to this end.

The following theorem establishes the soundness of this
approach:

Theorem 1. If CS 1, CS 2, CS 3, CS 4 and CS 5 hold, then
Π is symbolically sound.

Proof. Proof by induction over the length of t|ΣX .
Base case |t|ΣX | “ 0: Let σ = I . Then T Πpσq = setppqq. For
the empty trace t, it holds that t|ΣX = pq P T Πpσq.
Inductive step: Let |t|ΣX | “ k` 1.Let t|ΣX“ pe1e2..ek`1q. By
CS 3 and the inductive hypothesis, there is a tk|ΣX“ pe1e2..ekq
and a planning trace ptk, with ptk « tk. From ptk we can
infer that there exists a reachable state (of Π) σk with σk|ΣX“
te1, e2, ..eku.

By CS 1, we get that all postconditions of any action in
A are singleton sets. By CS 2, there exists an action a P A
with a “ pprea, postaq and posta “ ek`1. Let Aek`1

be the
partition of all of A containing all actions with postcondition
ek`1. As ek`1 P ΣX, by CS 4 all preconditions are in ΣX,
too. By CS 5, there exists an action a˚ “ ppre, tek`1uq s.t.
for all g P pre : g P tk. As pre Ď ΣX, all g P pre are in
setptk|ΣXq “ setpptk|ΣXq and thus in σk. Applying a˚ to the
state, we get σk`1 with σk`1|ΣX“ te1, e2, ..ek, ek`1u.

Finally, we can conclude that there exists a planning trace
ptk`1 P T Πpσk`1q s.t. t « ptk`1, namely t « e1...ekek`1 «

ptk ˝ ek`1 “ ptk`1.

C. Symbolic Completeness

The complementing property to symbolic soundness is
symbolic completeness. It ensures that the planning model does
not introduce spurious attacks that cannot occur in the protocol
model. Planning problems are frequently used to perform
a quantitative assessment of, e.g. the number of reachable
goal states or the probability of reaching certain assets. The
correctness of such an assessment relies on symbolic soundness
and symbolic completeness. This is in contrast to computational
completeness, which is of little interest as long as the symbolic
model is good enough to provide verification results.

Definition 3 (Symbolic Completeness). A planning task Π is
symbolically complete w.r.t. T if for every planning trace pt ,
there is a trace t P T s.t. pt « t.

We provide an additional assumption that ensures symbolic
completeness. Unfortunately, it is a liveness property, i.e.,
a property of the form: ‘the [protocol] eventually enters a
desirable state’ [36] and cannot be verified by the current
generation of protocol verifiers.

CC 1. If an action is available and the trace contains the
necessary preconditions, then the trace can be extended so it

contains this action’s postcondition.

@t P T ,a “ ptp1, ..., pnu, cq P A :

c P ΣX ^ ptp1, ..., pnuq Ă setptq ùñ

Dt1 P T : t1 “ t ˝ tr ^ psetptrq X ΣXq “ tcu.

Discussion. Lamport [36] informally describes such properties
as liveness properties. Note that here, the ‘desirable state’ is
an additional attack step. As we only consider finite traces,
Alpern and Schneider’s definition of liveness [4], — which is
well known because it decomposes trace properties into safety
and liveness properties — does not classify CC 1 as a liveness
property.2 Other characterisations do, see Kindler [33] for a
survey.

Nevertheless, state-of-the-art protocol verifiers in the un-
bounded setting [10, 41, 17] only support the specification of
properties of the form @t P T .ϕptq where ϕ is a property that
is protocol-agnostic, i.e. invariant w.r.t. T . This prohibits a
direct encoding of CC 1.

Backes, Dreier, Kremer, and Künnemann propose an encod-
ing of liveness properties for Tamarin that allows transforming
liveness properties into this fragment of safety properties [7].
Their methodology is based on the idea that the protocol
specifies a way to reach the ‘desirable state,’ e.g. by defining
a recovery protocol. Hence any trace either already reached a
desirable state or it has not exhausted all specified recovery
steps — which is a safety property. Unfortunately, this approach
does not apply here, as, in our case, the protocol model is not
meant to specify how an attack is mounted.

An alternative approach to a direct encoding is to show that
any trace t can be combined with any trace t1 that contains
p1, . . . , pn, c, and nothing else. This may hold for processes
of a certain form. With such a result, protocol verifiers could
again be used to show the existence of t1. For the present paper,
we leave the verification of CC 1 as an open question.

Under this condition, and if we assume the set of traces to
be prefix-closed, we obtain symbolic completeness.

Theorem 2. If CS 1, CS 3, CS 4 and CC 1 hold, then Π is
symbolically complete.

Proof. Induction over the length of pt |ΣX .
Base case: |pt|ΣX | = 0: Holds trivially for σ “ I.
Inductive step: Let pt |ΣX = e1...ekek`1. From the IH and
CS 3, we know that there exists a trace tk « e1, . . . , ek « ptk.
By definition of «, we know that ek`1 P Events and from
pt P T Π, we conclude that there is aek`1

P A with ek`1 as a
postcondition which was used to construct pt . By CS 1, aek`1

= (pre, tek`1u). By CS 4 we know that pre Ď ΣX.
The preconditions are met: pre Ă setptk |ΣXq because pre Ă
setpptk |ΣXq. Thus, we can apply CC 1 for a “ aek`1

and
t “ tk to obtain a trace t1 « tk ˝ tr with tr|ΣX“ ek`1. Hence
t1 « tk ˝ ek`1 « e1...ekek`1 « pt.

2According to their definition, ‘no partial execution is irremediable since if
some partial execution were irremediable, then it would be a “bad thing”.’

To summarize: in conjunction, Theorem 1 and Theorem 2
ensure that the set of planning traces induced by Π and the
set of protocol traces T are equal modulo ΣX if conditions
CS 1 — CS 5 and CC 1 are met. This is necessary for risk
estimation techniques that compute the expected loss of value
or the probability of a breach.

CS 1 to CS 2 are satisfied w.l.o.g. for monotonic planning
tasks and CS 3 is a standard assumption in protocol verification.
CS 4 is a restriction we place on the composition of the
security model and auxiliary models for the planning task.
The remaining assumptions CS 5 and CC 1 are both trace
properties, the former a safety property, the latter a liveness
property. Given the lack of tool support, we will now focus
on symbolic soundness, which ensures that that the planning
model considers all possible attacks. If symbolic soundness
holds, any quantitative result that is monotonic in A — e.g. the
expected damage or the probability of reaching a critical asset
— can be considered an upper bound, provided, of course, that
model parameters such as the value of assets and probabilities
of actions are correct.

V. APPLICATIONS

The previous section results lay the foundation for using
highly optimized planners for the analysis of large networks.
We envision the following applications.

a) Protocol analysis for limited network attackers:
Today’s protocol verification focuses on protocols in isolation
and against an attacker who can eavesdrop and modify all
messages on the network. In terms of communication, this
is the worst-case assumption for distributed services on the
Internet. On the other hand, underlying services like the PKI
or name resolution are almost always trusted and, more often
than not, vastly simplified to the point of complete abstraction.
For perspective, the Dolev-Yao model, which formalized these
assumptions, is older than the first implementation of name
resolution.

Planning models scale much better to large problem sizes
(in terms of actions) than protocol verifiers, and are thus able
to analyze the security of protocols in threat scenarios that
are more complicated to describe. Incorporating more precise
assumptions about the attacker could lead to more nuanced
results, e.g. about protocol security in various topologies.

b) Cost-benefit guided protocol deployment in the In-
ternet: Deployment assessment techniques are based on an
infrastructure threat model and consider the deployment of a
protocol as a ‘countermeasure.’ Using the recently proposed
‘Stackelberg planning algorithm,’ it is possible to obtain the
set of all Pareto-optimal protocol deployments per node. This
allows for an evaluation of the actual benefit of new proposals
vis-à-vis the current infrastructure of the Internet. It makes
it possible to compare proposals against each other that are
incomparable on paper, e.g. is DNSSEC a better solution against
JavaScript injection attacks than application-specific techniques
like subresource integrity on the HTML level.

This technique has been applied to email [52] and the
web [54], comparing solutions at the routing layer, resolution

layer and application layer. A weak point of this methodology
was the lack of justification for their attacker model. Symbolic
soundness and completeness can bridge this gap, as we will
demonstrate for a subset of the email model [52]. As we argued
in Section III, to justify the correctness of the Stackelberg
planning problem, it is sufficient to show the symbolic
soundness/correctness for the attacker planning problem, but
for arbitrary initial states.

c) Corporate network analysis: Risk assessment tech-
niques for local networks (e.g. mulVal [46]) focus on
implementation-level flaws, e.g. buffer overruns, but often
ignore the protocol level implications. An attacker that captures
the company’s certificate authority or authentication server
can usually exploit this infrastructure’s trust to obtain critical
assets. Moreover, modern cloud-based services introduce new
dependencies on external infrastructure. These aspects are
rarely considered and could be improved by a rule-based
representation of the involved protocol’s flaws.

VI. BACKGROUND: EMAIL CASE STUDY

We recall the email infrastructure attacker model by Speicher
et al. [52] to justify its soundness in the next chapter. Using
Stackelberg planning, they investigated how existing protocols
can be used to secure users against large-scale eavesdropping
by countries. While the impact of many techniques is different
depending on the attacker and defender country (e.g. Russia
and China are much more self-reliant than, e.g. Brazil), the
enforcement of TLS and improved certificate validation have a
significant impact throughout. In the following, we will focus
on their threat model and infrastructure representation.

The email infrastructure is modeled as a labeled property
graph [51], which is simply a graph with edge and node labels
that describe service providers and their interdependencies.

Definition 4. A labeled property graph is a directed multigraph
and described as a quadruple G = (V ,E,λ,µ) over an alphabet
Σ. V is the set of nodes. E Ă pV ˆV q is a set of edges between
nodes. The function λ : V Y E Ñ Σ maps a label from the
alphabet Σ to nodes and edges. µ : pV Y Eq ˆK Ñ S maps
a string value s P S to a node/edge and a key k P K.

TABLE II: Node labels (top) and edge labels (bottom).

Labels Description

IP Node for IP address
Dom Node for domain name.
AS IANA number assigned to the AS.
Cntry Country code

ORIG AS where lhs node originates from
LOC Country where lhs nodes is located
A DNS record mapping Domain to Address
MX DNS record mapping Domain to Domain
NS DNS record for Name Servers
DNS Resolving lhs requires resolving rhs
RES lhs node uses resolver on rhs for resolution
RTE (ASt) AS-level route between ASes via ASt

TABLE III: Corruption predicates

C (x) Node x P DomYIPYASYCntry under attacker
control

IDNS(d) Integrity of name resolution of d P Dom
compromised

IR(d1, e1) Integrity of some route from d1 P IP to e1 P IP
is compromised

IDNS(d, e) Integrity of name resolution of e P Dom from
the perspective of d P Dom compromised

unconf(d, e) email communication from some user of d P
Provider to some user of e P Provider is
considered unconfidential

nDNSSEC(d) d P Dom does not support DNSSEC

Table II shows the node labels and edge labels used
by Simeonovski et al. [51]. Figure 2 provides an example
for the interaction between two mail providers. The green
nodes represent IPv4 addresses and are labeled IP. They are
associated to autonomous systems (orange, labeled AS) via
the relation ORIG.

The blue nodes represent domain names and are labeled Dom.
They are associated to IPs or other domains via the relations
A, MX and NS which encode the resources records that were
obtained by scanning. They designate the domain’s IP address
(A), its responsible mail server (MX) and its authoritative name
server (NS), respectively.

The label DNS records the relationship between authoritative
name servers and RES between mail servers and their resolvers.
RTEpAS bq is used to record routing dependencies. If ASa is
connected to AS c and, somewhere along the way, a package
might traverse AS b, an attacker at AS b could eavesdrop that
communication. Domains, IPs and ASes are associated to
countries via LOC edges.

A. Infrastructure attacker model

An attacker in this model can be a country or a group of
countries that can corrupt all servers in their jurisdiction, as
well as to observe, intercept and alter all messages routed
through their jurisdiction.3 The IA model tracks infrastructure
compromise at different levels with corresponding predicates.
For example, if the attacker has compromised the resolver of
some domain, we would consider the integrity of all domain
name resolutions of this domain compromised. However, the
resolved domains themselves are not be compromised and may
be safe to use for clients that use a different resolver. These
predicates will be part of ΣX and thus have to coincide with
corresponding events in the protocol model.

There are 16 rules (also called action schemas) that define
how these predicates can be derived. They are parametric in
the graph: for a given graph, they are compiled into a finite
set of attacker actions A and predicates P . Our focus is on
the methodology; hence we will refer to Appendix A for the
full set of attacker rules and only give a flavor of these rules
with the following simple example.

3Attacks from large ISP can be modeled similarly [54].

gmail.com

gmail-smtp-in.l.google.com

64.233.167.26

US

216.58.207.37

AS15169

173.194.95.140 ns1.google.com

t-online.de

62.153.158.62 62.138.238.100

AS3320 DE

mx00.t-online.de

RTEpAS 1q...
RTEpASnq

NSMX MXA

A

A

LOC

LOC
ORIG

ORIG
ORIG

ORIG

RES RES

Fig. 2: Snippet of the property graph. (Taken from Figure 2 with permission of [52]).

Example 1.

d, e, r P Dom d
RES
ÝÝÑ r IRpd, rq nDNSSECpeq

IDNSpd, eq

The intuition is as follows. If the attacker controls the route
from a domain to the resolver that this domain uses, then
we consider the integrity of any name resolution this domain
attempts compromised. If the domain that is resolved uses
DNSSEC, however, then the resolver can verify the integrity
of this signature and this attack vector is not available. (A
different rule deals with the case where the resolver itself is
compromised.) The predicate nDNSSEC cannot be produced
by the attacker, as it is a defender predicate.

In Speicher et al.’s model, all attacker rules that produce the
predicate unconf are associated with a reward in terms of the
number of users affected. The Stackelberg planning algorithm
maximizes the sum of rewards. As unconf P ΣX, the symbolic
soundness result ensures that this is an upper bound.

B. Limitations

To simplify presentation, we concentrate on the core model,
consisting of resolvers, DNS, DNSSEC and SMTP. We left
out SMTP over TLS, DANE and IPsec for secure inter-AS
communication. The protocol transformations we present in the
next section would apply to the full model, as these protocols
could be added without changing the structure of the processes.
Thus the methodology would be the same, but the ProVerif
processes would need to be extended.

The attacker model is not probabilistic, but relies on correct
attacker rewards, which Speicher et al. [52] estimated from
public sources. These are model parameters and need to be
estimated.

VII. BACKGROUND: PROVERIF

In the following, we introduce ProVerif’s dialect of the
applied´π calculus [10, 11]. Readers familiar with it can
safely skip to the next section.

A. Syntax

We present the syntax of the calculus in Figure 3. Terms rep-
resent messages and data. Processes represent entities/programs.
We use x, y, z to represent variables, a, b, c, n, k, s for free
names and p, q for public names. We use FN and PN to refer
to the set of free names and public names, respectively. Both
are arbitrary, but infinite. The function symbol f represents a

M,N ::“ terms
v, x, y, z variable
a, b, c, n, k, s free name
p, q public name
fpM1, ...,Mnq constructor application

P,Q ::“ processes
0 nil
P |Q parallel
!P replication
inpM,xq.P input
outpM,Nq.P output
pνaqP restriction
if M “ N then P

else Q conditional
let x “ gpM1, ...,Mnq in

P else Q destructor application
eventpMq.P event

Fig. 3: Syntax of the process calculus

constructor whereas we use g to represent destructors. Both
are abstract function symbols with some fixed arity.

Terms are defined over names, variables, and the applications
of constructors. Destructors are used to manipulate terms in
processes: let x “ gpM1, ...,Mnq in P else Q binds x to
the result of the destructor application of g on M1...Mn and
continues with process P . If the application fails, however, we
continue with process Q. A destructor g is defined by a finite set
of reductions def pgq :“ gpN1, ..., Nnq Ñ N where the terms
N,N1, ..., Nn are build without free names and varpNq Ă
varpN1Y ...YNN q. A destructor fails, if no reduction applies.

Example 2. Symmetric encryption is described by a 2-ary
constructor senc and a 2-ary destructor with the following
reduction:

sdecpsencpx, yq, yq Ñ x

We write fnpP q (and fvpP q) for the sets of names
(variables) that are free in P . A substitution δ = ttt1{x1

u ,
..., ttn{xn

uu is a partial function, mapping variables to terms.
The domain of δ is Dpδq = tx1, ..., xnu and δ maps xi to ti.
The application of g on the terms M1, ...,Mn is defined if and
only if there exists some substitution δ and a reduction rule
gpN1, ..., Nnq Ñ N such that for all i P t1, ..., nu it holds that
Ni “ Miσ. In this case, let x “ gpM1, ...,Mnq in P else Q

would bind x to Nδ and continue to execute P .
Additionally, the process calculus provides the instruction

eventpF q.P to emit some F P ΣEvent as an annotation of the
process and continue to execute P . We define the set of these
annotations as

Events :“ tF pt1, .., tkq | ti terms, F P ΣEvent with arity ku.

The remaining constructs depicted in Figure 3 are standard
constructs included in the π-calculus. 0, or the nil process,
indicates the end of the process and does nothing. P |Q
composes P and Q in parallel and !P represents and unbounded
number of copies of P in parallel composition. A channel
can be any term M . The process inpM,xq.P receives a
message on channel M . It then continues to execute P with x
being bound to the received message. outpM,Nq.P outputs
a term N on channel M and executes P . pνaqP depicts a
restriction. It first creates a free name a and then executes
P . A free name a is a secret and cannot be guessed, but
it may be obtainable via computation/deduction of public
messages. The conditional Q compares two terms M and
N and executes P if they are equal and Q otherwise. Note that
this is just a special case of destructor application. Let equal be
a destructor symbol and def pequalq = tequalpM,Mq ÑMu.
Then if M “ N then P else Q can also be expressed as
“ equalpM,Nq in P else Q with x being not free in P and
Q. For brevity, we will omit trailing 0 processes and empty
else-branches.

B. Semantics

We define the semantics by first introducing the notions of
frame and deduction. A frame νE .δ represents a sequence of
messages observed so far and the secrets generated by the
protocol. The first is captured by a substitution δ, the latter by
the set of used names E .

Deduction describes the capabilities of an adversary to infer
and compute new terms from already observed messages. We
define the deduction relation νE .δ $ t between a frame and a
derivable term as the smallest relation s.t. the rules in Figure
5 hold. We further define fpriv as a subset of all constructor
symbols where the DCON deduction rule cannot be used. We
refer to fpriv as private constructor symbols.

The operational semantics are defined by a labeled transition
relation between process configurations. This configuration is
represented by a 3-tuple pE ,P, δq. P is a multiset representation
of processes being executed in parallel. E is the set of free
names generated by the processes in P . δ is a substitution
modeling the messages observed by the environment.

The labeled transition relation of our calculus can be found in
Figure 4. Each transition between two configurations is labeled
with some F P Events Y tHu. For the ease of presentation,
we omit empty sets and write Ñ instead of H

ÝÑ. We define
Ñ˚ to represent multiple application of transition rules labeled
with the empty set. For the other F P Events we define

F
ùñ

as Ñ˚ F
ÝÑÑ˚.

Definition 5 (Traces). Given a process P , we now define its
traces:

tracespP q “
!

pF1, ...Fnq | pH, tP u,Hq
F1
ùùñ pE1,P1, δ1q

F2
ùùñ . . .

Fn
ùùñ pEn,Pn, δnq

)

VIII. CASE STUDY: EMAIL

We now come back to Speicher et al.’s email case study
(Section VI) to investigate the symbolic soundness of their
model. Our focus will be on the methodology. We first present
a translation from labeled property graphs into processes.
Verifying this process for each property graph is impractical,
both because of the size of the graph (protocol verifiers do
not scale well with the model size) and because any change
in the infrastructure would require a new analysis. Hence,
we define two process transformations that allow for a sound
mapping of all these processes to a single process, i.e. an
over-approximation. We verify this process in ProVerif and
can thus provide a symbolic soundness result for all process
graphs at once.

A. Symbolic model
We define a function F from property graphs to processes

in Figure 6. We use the following notation:

‚ For a finite set S “ ta, .., zu, ‖
sPS

P psq denotes P paq |

. . . | P pzq. Instead of s P S, we sometimes use set-builder
notation to directly define the components of each s.

‚ For a fixed labeled property graph G that is implicit in
the context, we write Vx as a subset of all nodes in V

with label x. We write y L
ÝÑ z to represent an edge in G

labelled with L connecting the two nodes x and y. To
ease notation, we use d, e for nodes representing domain
names, r for resolvers and n for name servers.

‚ We further assume that all nodes are public names, to
avoid introducing a mapping.

Our process represents SMTP, DNS, DNSSEC, resolvers,
and a simplified version of inter-AS communication. As
we focus on the methodology, we do not elaborate on the
subprocesses modeling these protocols, but on the top-level
process that composes them. The processes Psmtp-server and
Psmtp-client describe the client and server roles within the SMTP
protocol. Each provider v defines several mail servers dc{s

MX (or
e

c{s
MX) via the MX resource record. Each of those execute both

client and server roles. They have one or many IP addresses
i
c{s
MX, which are located in autonomous systems as

c{s
MX. Whereas

the process Psmtp-server only models the receiving part of the
SMTP protocol, Psmtp-client models DNS/DNSSEC requests as
well as the client role of SMTP. To establish the connections
between the different services, we use the IP addresses to
model channels between them. These channels are built over
private constructors. In contrast to the Dolev-Yao model, the
attacker cannot eavesdrop or manipulate messages per default,
but needs to obtain access to these channels by compromising
either domain names, IP addresses, or ASes.

pE ,P Y# t0u, δq Ñ pE ,P, δq (NULL)

pE ,P Y# tP | Qu, δq Ñ pE ,P Y# tP,Qu, δq (PAR)

pE ,P Y# t!P u, δq Ñ pE ,P Y# tP, !P u, δq (REPL)

pE ,P Y# tνa;P u, δq Ñ pE Y tbu,P Y# tP t

b{a
(

uu, δq if b is free an not in E (NEW)

pE ,P Y# toutpt,Mq;P u, δq Ñ pE ,P Y# tP u, δ Y tt

M{x
(

uuq if x is fresh and νE .δ $ t (OUT)

pE ,P Y# tinpt, xq;P u, δq Ñ pE ,P Y# tP t

M{x
(

uu, δq if νE .δ $M and if νE .δ $ t (IN)

pE ,P Y# tlet x “M in P else Qu, δq Ñ pE ,P Y# tP t

M{x
(

uu, δq if evaluation of M succeeds (LETS)

pE ,P Y# tlet x “M in P else Qu, δq Ñ pE ,P Y# tQu, δq if evaluation of M fails (LETF)

pE ,P Y# teventpF q;P u, δq
F
ÝÑ pE ,P Y# tP u, δq (EVENT)

Fig. 4: Operational semantics.

Note that evaluation of some M succeeds, if for all destructor symbols in M , there is an applicable rewrite rule. If there is a destructor
symbol in M which has no applicable rewrite rule, then evaluation fails.

a P FN Y PN a R ÝÑn

νE .δ $ a
pDNAMEq

,

x P Dpδq
νE .δ $ xδ

pDFRAMEq

νE .δ $ t1 . . . νE .δ $ tn f R fpriv

νE .δ $ fpt1, ..., tnq
pDCONq

νE .δ $ t1 ... νE .δ $ tn tdpt1, ..., tnq Ñ tu P def pgq

νE .δ $ t
pDDESq

Fig. 5: Deduction rules.

The processes Pres, Pns, and Prns describe the resolver and
server role within the DNS protocol, which, depending on
the server’s configuration, include the DNSSEC extension.
Process Pres models the resolver role by communicating with
the DNS/DNSSEC infrastructure, on the one hand, and with
the requesting role of the mail server. As with the previously
mentioned process, the IPs are used to construct private
channels via private constructors. The same holds for the name
server role modeled by Pns. An exception is the process Prns
modeling root name servers. We assume that root servers
cannot be corrupted, since that would break the DNS/DNSSEC
infrastructure as a whole. Therefore, the attacker is not able to
corrupt the connection between the root server process and the
process modeling the resolver role. Connections established
by the processes Pres and Pns, however, may be corrupted by
corrupting their domain names, IP addresses, or ASes. For
simplicity, we constrained our DNS model to two levels of
name servers.

With this construction we represent the structure of the IA
model. We instantiate all communication paths and relations
in the IA model using the same labeled property graph G.
Further, all featured protocols and functionalities of the IA
model are represented by subprocesses in our model, as well
as the notion of corruption.

In the follow up, we will modify the top-level structure,
but leave the processes Psmtp-client, Psmtp-server, Pres, Pns and Prns

intact. They are detailed in Appendix C.

B. Proof via sound process transformations

With F , we can, in principle, verify the symbolic soundness
of each planning task induced by some property graph G.
The respective model FpGq can become very large: property
graphs can have thousands to millions of nodes, whereas the
majority of protocol models fits on a piece of paper. Protocol
verifiers are not optimized for models of this size. Moreover,
it is tedious to generate and verify a process whenever a new
attacker country is considered or the property graph is modified.
Last but not least, the analogy to computational soundness
(Sec. II-3) suggest that symbolic soundness results (a) should
encompass some set of protocols and (b) apply to any network
composed of them, here described by the property graph. 4

Conceptually, we therefore desire a result that is independent
of G.

To this end, we propose the following proof technique
specific to the applied-π calculus. Let FpGq be a function
from property graphs5 to processes and assume that it can
be expressed only using the applied-π calculus and the meta
language operation ‖

sPS

P psq. In the first step, we construct a

process P such that, for all G, tracespFpGqq Ď tracespP q.
This implies that every trace property that holds for P also
holds for FpGq, independent of G. To this end, we apply to
two transformations that over-approximates a process.

The first permits substituting several uniform parallel pro-
cesses ‖

sPS

P psq by a single process under replication that

obtains this input from the adversary. In the description of
FpGq, G can only occur within these S, hence the resulting
process is now independent of G.

4Computational soundness results fix a set of cryptographic primitives, but
hold for a class of protocols.

5We use property graphs for concreteness, the actual representation of the
network is irrelevant, as long as it translates to planning models and processes
in a uniform way.

FpGq “ ‖
vPVProvider

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‖
dc

MX,i
c
MX,as

c
MX,e

c
MX,j

c
MX,as1PVMX,r

c
RES,j

c
RES,as2PVRES,as

1,as2PV,v2PVProvider.

vÑdc
MX

A
ÝÑic

MX
ORIG
ÝÝÝÑasc

MX,

v2Ñec
MX

A
ÝÑjc

MX
ORIG
ÝÝÝÑas1^pas1“asc

MX_as1
RTEpas1q
ÝÝÝÝÝÑasc

MXq,

rc
RES

A
ÝÑjc

RES
ORIG
ÝÝÝÑas2^pas2“asc

MX_as2
RTEpas2q
ÝÝÝÝÝÑasc

MXq,
ÝÑc “pv,dc

MX,i
c
MX,as

c
MXq,
ÝÑs “pv2,ec

MX,j
c
MX,as1q,

ÝÑr “prc
RES,j

c
RES,as2q

!Psmtp-clientp
ÝÑc ,ÝÑs ,ÝÑr q

| ‖
ds

MX,i
s
MX,as

s
MX,e

s
MX,j

s
MX,as1PVMX,asPV,v2PVProvider.

vÑds
MX

A
ÝÑis

MX
ORIG
ÝÝÝÑass

MX

v2Ñes
MX

A
ÝÑjs

MX
ORIG
ÝÝÝÑas1^pas1“ass

MX_as1
RTEpasq
ÝÝÝÝÝÑass

MXq,
ÝÑs “pv,ds

MX,i
s
MX,as

s
MXq,
ÝÑc “pv2,es

MX,j
s
MX,as1q

!Psmtp-serverp
ÝÑs ,ÝÑc q

| ‖
dRES,iRES,asRESPVRESeMX,iMX,as1PVMX,nDNS,iDNS,as2PVDNS,nRNS,iRNS,as3PVRNS,as

1,as2,as3PV.

vÑdRES
A
ÝÑiRES

ORIG
ÝÝÝÑasRES,

pvÑeMX
A
ÝÑiMX

ORIG
ÝÝÝÑas1,^pas1“asRES_as1

RTEpas1q
ÝÝÝÝÝÑasRESq,

pnDNS
A
ÝÑiDNS

ORIG
ÝÝÝÑas2,^pas2“asRES_as2

RTEpas2q
ÝÝÝÝÝÑasRESq,

pnRNS
A
ÝÑiRNS

ORIG
ÝÝÝÑas3,^pas3“asRES_as3

RTEpas3q
ÝÝÝÝÝÑasRESq,

ÝÑr “pdRES,iRES,asRESq,
ÝÑc “pv,eMX,iMX,as1q,

ÝÑ
d “pdDNS,iDNS,as2q,

ÝÝÑ
root“pdRNS,iRNS,as3q

!Presp
ÝÑr ,ÝÑc ,

ÝÑ
d ,
ÝÝÑ
rootq

| ‖
dDNS,iDNS,asDNSPVDNS,rRES,iRES,as1PVRES,asPV.

vÑdDNS
A
ÝÑiDNS

ORIG
ÝÝÝÑasDNS,

rRES
A
ÝÑiRES

ORIG
ÝÝÝÑas1^pas1“asDNS_as1

RTEpasq
ÝÝÝÝÝÑasDNSq,

ÝÑ
d “pdDNS,iDNS,asDNSq,

ÝÑr “prRES,iRES,as1q

!Pnsp
ÝÑ
d ,ÝÑr q

| ‖
dRNS,iRNS,asRNSPVRNS,rRES,iRES,as1PVRES,asPV.

vÑdRNS
A
ÝÑiRNS

ORIG
ÝÝÝÑasRNS,

rRES
A
ÝÑiRES

ORIG
ÝÝÝÑas1^pas1“asDNS_as1

RTEpasq
ÝÝÝÝÝÑasRNSq

ÝÝÑ
root“pdRNS,iRNS,asRNSq,

ÝÑr “prRES,iRES,as1q

!Prnsp
ÝÝÑ
root,ÝÑr q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Fig. 6: Function F from property graphs to processes.

Lemma 1. With

tracesp!inpÝÑv q.P q Ě tracesp‖
ÝÑp

P
!ÝÑp {ÝÑv

)

q

we relate the replication of a process inpÝÑv q.P , where ÝÑv can
be supplied by the adversary (i.e., the frame), to a finite parallel
execution of the same process P , where ÝÑv gets substituted
with public names supplied by G.

We may now automatically conduct the following verification
steps with ProVerif (or any other verifier). ProVerif’s abstraction
in particular is sensitive to how deep in a process an input
occurs. The second transformation thus permits pushing inputs
further inside the process to aid verification.

Lemma 2. For all processes Q that contain exactly one
subprocess inpxq.P , let Q1 be Q with P instead of this
subprocess. Then: tracespinpxq.Q1q Ď tracespQq.

Both lemmas are proven in Appendix B. In the second
step, we ensure that these transformations have been correctly
applied, i.e., that tracespFpGqq Ď tracespP q follows from
Lemma 1 and 2. In the third step, we verify the three syntactic

conditions on the planning task. Finally, we use ProVerif to
show Condition CS 5. We partition A by postcondition. For
this condition to hold, each element must have the following
form.

Ai “ tppre
1
i , tpost iuq, ppre

2
i , tpost iuq, ..., ppre

k
i , tpost iuqu.

We translate each element into a correspondence query: for
each trace, if post i occurs then pre1

i , pre2
i or any other preji ,

j P t1, ¨ ¨ ¨ , ku, occurs as well. As Condition CS 3 holds
for any ProVerif process, we obtain symbolic soundness by
Theorem 1.

C. ProVerif Model Introduction

Using the two lemmas above, we can transform all F pGq
into the process P , whose structure we present in Figure 7.
The full model is in Appendix C.

In this model, the adversary is also able to choose which
processes communicate, and thus controls the underlying
network topology. Given the process model based on the graph
G in Figure 6 and our ProVerif model P , we show that the
transformations have been applied correctly.

Theorem 3. @G.tracespFpGqq Ď tracespP q.

! (i n (c , p rov : p r o v i d e r) ;
! (i n (dom c : dom) ; i n (i p c : i p) ; i n (AS c : a s) ;

! (Psmtp-client (prov , dom c , ip c , AS c)))
| ! (i n (dom s : dom) ; i n (i p s : i p) ; i n (AS s : a s) ;

! (Psmtp-server (prov , dom s , ip s , AS s)))
| ! (i n (dom r : dom) ; i n (i p r : i p) ; i n (AS r : a s) ;

! (Pres (dom r , i p r , AS r)))
| ! (i n (dom d : dom) ; i n (i p d : i p) ; i n (AS d : a s) ;

! (Pns (dom d , ip d , AS d)))
| ! (i n (dom rn : dom) ; i n (i p r n : i p) ; i n (AS rn : a s) ;

! (Prns (dom rn , i p r n , AS rn))))

Fig. 7: Simplified ProVerif model (inpmq short for inpc,mq).

Lemmas 1 and 2 reduce the proof of this theorem to a struc-
tural argument (see Appendix B). The syntactic conditions on
the planning task can be verified by inspecting it (Appendix A).
Condition CS 1, discussed in Sec. IV-B, holds as there is no
negated postconditions. Condition CS 2 holds, as all events
in ΣX occur as a postcondition of some rule. Condition CS 4
holds, as all preconditions are in ΣX.

D. Automated verification

It remains to show Condition CS 5, which we verify using
ProVerif. The full set of queries is specified in Appendix 1. We
grouped these queries according to whether the postcondition
expresses a loss of integrity or a loss of confidentiality. We
express the first property as a correspondence property and
the second as a reachability property known as weak secrecy.
For the first kind, we verify that any event matching some
pattern e was preceded by an event matching a pattern e1. Any
trace with an event matching e but not e1 could be mapped
to one where such integrity violation events are specifically
marked; these would be the actual events in ΣX. For the second
kind, weak secrecy is expressed as usual. The attacker can
demonstrate the ability to correctly input a secret message
(in this case, the content of an email) in a subprocess. Upon
success, the subprocess can be reduced to an event. We analyze
the reachability of this event.

During the modeling process, we found two bugs in the
IA model. First, in the IA model, Cpipq implies Cpdq if d
resolves to ip, but not vice versa. As Cpipq does not represent
IP-level attacks, but a compromise of the service identified by
ip, this ought to be the case. Without this rule, all rules that
concern routing, name resolution or application compromise
break down, as they identify the service with the domain it
runs on. Luckily, this does not invalidate Speicher et al.’s
result, as an inconsistency between the corruption of an IP
and a domain can only come from (a) missing or inconsistent
information in the property graph, e.g. domains d1 and d2

linked to different countries but resolving to the same IP, or
(b) from an inconsistent initial network attacker state. We
confirmed with the authors that neither condition was met.

The second bug concerns the DNSSEC protocol. DNSSEC
requires resolver-side signature validation. This is not always
the case for resolvers run by ISPs, but a realistic future scenario
to investigate. By contrast, local resolvers (e.g. on clients

or services like mail) rely on the ISP’s validation during
(recursive) resolving and will, at least for the near future, not
validate signatures themselves. rdns´route´res [52], however,
assumes that this is the case, i.e. that DNSSEC is an effective
countermeasure against domain poisoning attacks mounted
between the local (recursive, usually non-validating) resolver
and the ISP’s (iterative, validating) resolver. Presumably, this
is a bug, or at least an unrealistic assumption.

To solve the first problem, we added a rule turning Cpdq
into Cpipq and use Cpipq in all other rules, instead of Cpdq.
To solve the second problem, we altered the rule by deleting
the nDNSSEC predicate from the precondition. The changes
are highlighted in Appendix A.

ProVerif proves all queries automatically and thus the last
condition, CS 5. We used ProVerif version 2.02pl1. On an Intel
i7-9750H CPU with 16 GB RAM, the analysis took 9.92s.
This concludes our proof for the symbolic soundness.

E. Modeling Challenges

We take the opportunity to discuss some modeling challenges
that we encountered and that are specific to our methodology.

The first is the modeling of the infrastructure attacker, who
is less powerful than ProVerif’s standard network attacker. It
can only observe communication if the corresponding route has
been compromised. Our first approach used private channels to
model non-corrupted transfer of messages. We noticed ProVerif
running into termination problems during the resolution. We
minimized our model to three parties and found the issue to be
ProVerif’s internal representation of private channels as Horn
clauses. This is because private channels are synchronous, as
opposed to free (public) channels.6 Routing in the Internet
is actually asynchronous, so we model secret channels using
2-ary fact symbols req packet, ans packet and the following
reduction:

get req packetpx, req packetpx, yqq “ y.

(The reductions for ans packet are analogous). All parties
apply the function symbol with a shared key in the first
parameter, to represent communication on that channel. The
keys are built over names representing the IP addresses of
the communicating parties, as well as a freshly chosen source
port (sender) and the publicly known target port. To corrupt
a key, the adversary claims the entity as part of its domain.
Additionally, the adversary may choose some AS under its
control and claims it to be part of the IP route between the
communicating parties. With the corruption of this AS, the
route is also seen as corrupted and the adversary can claim
the key. This in-transit AS corruption model is very similar to
the threat model described in the IA model.

The second challenge is how to structure the process
such that information about corruption at the routing level
is transmitted to processes that represent the resolution or
application layer. As an example, imagine the adversary

6In addition, Babel, Cheval, and Kremer point out various communication
semantics.

compromising an AS. All service providers affected would
need to be informed that they can now output their keys.
First attempts with private channels lead to non-termination.
Instead, we restructured the process so that an AS compromise
is a subprocess of the lower layer. Each entity needs to be
compromised separately, but raises the same event Cpasq.

The third challenge is the size of the model. Using ProVerif’s
pretty printing, the process counts 360 lines, which is unusually
large. The queries alone take about 47 lines. The most recent
ProVerif release 2.02pl1 improved the verification time from 4
minutes (with 2.01) to about ten seconds. Hence we do not see a
reason why the model could not be extended to cover Speicher
et al. ’s complete model at a reasonable level of abstraction.
Nevertheless, a full-blown model of TLS could bring ProVerif
to its limits. We suspect the model size is the reason why
resolution takes unusually long — typically, ProVerif’s analysis
takes seconds or does not terminate at all. Disabling either the
DNSSEC or DNS processes supports our suspicion that, the
model size has a strong impact on the verification time, even
though the models are relatively simple. A potential remedy is
techniques for vertical and parallel composition (e.g. [20], [15],
[27]), which could potentially be used to derive conditions for
the composition of IA models.

IX. CONCLUSION

We introduced the first formal approach to justify vulnera-
bility analysis and risk assessment techniques that operate on
an Internet-wide scale. We provided a formal methodology to
analyze a given model with off-the-shelf verifiers and demon-
strated the applicability of our approach for symbolic soundness
w.r.t. a real-world IA model. The protocol transformations and
modeling tricks to represent infrastructure attackers in the
Dolev-Yao model might be of independent interest for protocol
analysis, e.g. for the analysis of p2p protocols.

We identify two main limitations: first, the verification of
symbolic completeness requires either true7 support for liveness
in existing verifiers, or syntactical conditions that ensure that
liveness can be concluded from reachability properties. We
speculate that the reason for the lack of support is less in
the technical challenges they pose, but the lack of a use case.
Processes are expected to specify how a ‘good state’ can be
reached.

The second limitation is the size of the model. We are
confident that a holistic analysis of multiple protocols acting
in parallel can be conducted for the whole of Speicher et al.’s
model, but what if we want to include a full-grown model
of different versions of TLS and IPsec? A deeper exploration
of protocol composition in light of the infrastructure attacker
and IP-like communication may yield a refined verification
methodology and perhaps even composition results for IA
models.

7See discussion in Sec. IV-C.

REFERENCES

[1] Martin Abadi and Cedric Fournet. “Mobile values, new names,
and secure communication”. In: ACM Sigplan Notices 36.3
(2001), pp. 104–115.

[2] Martı́n Abadi and Phillip Rogaway. “Reconciling Two Views
of Cryptography (The Computational Soundness of Formal
Encryption)*”. en. In: J. Cryptology 15.2 (2002), pp. 103–127.
(Visited on 01/20/2020).

[3] Nawaf Alhebaishi, Lingyu Wang, and Anoop Singhal. “Threat
Modeling for Cloud Infrastructures”. In: EAI Endorsed Trans-
actions on Security and Safety 5.17 (2018).

[4] Bowen Alpern and Fred B Schneider. “Defining liveness”. In:
Information processing letters 21.4 (1985), pp. 181–185.

[5] Paul Ammann, Duminda Wijesekera, and Saket Kaushik.
“Scalable, graph-based network vulnerability analysis”. In:
Proceedings of the 9th ACM Conference on Computer and
Communications Security. ACM. 2002, pp. 217–224.

[6] Kushal Babel, Vincent Cheval, and Steve Kremer. “On the
semantics of communications when verifying equivalence
properties”. In: J. Comput. Secur. 28.1 (2020), pp. 71–127.

[7] Michael Backes et al. “A Novel Approach for Reasoning about
Liveness in Cryptographic Protocols and its Application to
Fair Exchange”. In: Proceedings of the 2nd IEEE European
Symposium on Security and Privacy (Euro S&P ’17). IEEE
Computer Society, 2017.

[8] Gilles Barthe et al. “Computer-Aided Security Proofs for the
Working Cryptographer”. In: Advances in Cryptology. Springer,
2011, pp. 71–90.

[9] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi.
“Verified models and reference implementations for the TLS
1.3 standard candidate”. In: 2017 IEEE Symposium on Security
and Privacy (SP). IEEE. 2017, pp. 483–502.

[10] B. Blanchet. “An efficient cryptographic protocol verifier
based on prolog rules”. In: Proceedings. 14th IEEE Computer
Security Foundations Workshop, 2001. IEEE, 2001, pp. 82–96.
(Visited on 01/20/2020).

[11] Bruno Blanchet et al. “ProVerif 2.00: automatic cryptographic
protocol verifier, user manual and tutorial”. In: Version from
(2018), pp. 05–16.

[12] Mark S Boddy et al. “Course of Action Generation for Cyber
Security Using Classical Planning.” In: ICAPS. 2005, pp. 12–
21.

[13] Tom Bylander. “The computational complexity of propositional
STRIPS planning”. In: Artificial Intelligence 69.1-2 (1994),
pp. 165–204.

[14] Kaouthar Chetioui et al. “Formal Verification of Confidentiality
in DNSSEC and E-DNSSEC Protocols Using Pi-Calculus
and ProVerif”. In: Procedia Computer Science. The 10th
International Conference on Emerging Ubiquitous Systems
and Pervasive Networks (EUSPN-2019) / The 9th International
Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2019) /
Affiliated Workshops 160 (1, 2019), pp. 752–757. (Visited on
07/08/2020).

[15] Vincent Cheval, Véronique Cortier, and Bogdan Warinschi.
“Secure composition of PKIs with public key protocols”. In:
2017 IEEE 30th Computer Security Foundations Symposium
(CSF). IEEE. 2017, pp. 144–158.

[16] Ericson Clifton et al. “Fault tree analysis-a history”. In: Pro-
ceedings of the 17th International Systems Safety Conference.
1999, pp. 1–9.

[17] Cas JF Cremers. “The Scyther Tool: Verification, falsification,
and analysis of security protocols”. In: International conference
on computer aided verification. Springer. 2008, pp. 414–418.

[18] Cas Cremers et al. “A Comprehensive Symbolic Analysis
of TLS 1.3”. en. In: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security - CCS
’17. ACM Press, 2017, pp. 1773–1788. (Visited on 02/06/2020).

[19] Danny Dolev and Andrew Yao. “On the security of public key
protocols”. In: IEEE Transactions on information theory 29.2
(1983), pp. 198–208.

[20] Santiago Escobar et al. “Sequential protocol composition
in Maude-NPA”. In: European Symposium on Research in
Computer Security. Springer. 2010, pp. 303–318.

[21] Richard E. Fikes and Nils Nilsson. “STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving”.
In: AI 2 (1971), pp. 189–208.

[22] Sylvain Frey et al. “It bends but would it break? topological
analysis of bgp infrastructures in europe”. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS&P).
IEEE. 2016, pp. 423–438.

[23] Nirnay Ghosh and S. K. Ghosh. “A Planner-Based Approach
to Generate and Analyze Minimal Attack Graph”. In: Appl
Intell 36.2 (1, 2012), pp. 369–390. (Visited on 06/05/2020).

[24] Nirnay Ghosh and SK Ghosh. “An intelligent technique for
generating minimal attack graph”. In: First Workshop on Intel-
ligent Security (Security and Artificial Intelligence)(SecArt’09).
2009.

[25] Glenn Greenwald and Ewen MacAskill. “NSA Prism program
taps into user data of Apple, Google and others”. In: The
Guardian 7.6 (2013), pp. 1–43.

[26] James A Hendler, Austin Tate, and Mark Drummond. “AI
planning: Systems and techniques”. In: AI magazine 11.2
(1990), pp. 61–61.

[27] Andreas V Hess, Sebastian A Mödersheim, and Achim D
Brucker. “Stateful protocol composition”. In: European Sym-
posium on Research in Computer Security. Springer. 2018,
pp. 427–446.

[28] P. Hoffman. SMTP Service Extension for Secure SMTP over
Transport Layer Security. RFC 3207 (Proposed Standard).
Internet Engineering Task Force, Feb. 2002. URL: http://www.
ietf.org/rfc/rfc3207.txt.

[29] Jörg Hoffmann. “Simulated Penetration Testing: From” Di-
jkstra” to” Turing Test++””. In: Twenty-Fifth International
Conference on Automated Planning and Scheduling. 2015.

[30] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. “Prac-
tical attack graph generation for network defense”. In: 2006
22nd Annual Computer Security Applications Conference
(ACSAC’06). IEEE. 2006, pp. 121–130.

[31] Florian Kammuller. “Verification of DNSsec Delegation Sig-
natures”. In: 2014 21st International Conference on Telecom-
munications (ICT). 2014 21st International Conference on
Telecommunications (ICT). IEEE, 2014, pp. 298–392. (Visited
on 07/08/2020).

[32] Kerem Kaynar and Fikret Sivrikaya. “Distributed attack graph
generation”. In: IEEE Transactions on Dependable and Secure
Computing 13.5 (2015), pp. 519–532.

[33] Ekkart Kindler. “Safety and liveness properties: A survey”. In:
Bulletin of the European Association for Theoretical Computer
Science 53.268-272 (1994), p. 30.

[34] Igor Kotenko and Mikhail Stepashkin. “Attack graph based
evaluation of network security”. In: IFIP International Confer-
ence on Communications and Multimedia Security. Springer.
2006, pp. 216–227.

[35] SSL Labs. SSL Pulse. URL: https://www.ssllabs.com/ssl-pulse/.
[36] Leslie Lamport. “Proving the correctness of multiprocess

programs”. In: IEEE transactions on software engineering
2 (1977), pp. 125–143.

[37] Changwei Liu, Anoop Singhal, and Duminda Wijesekera.
“Using attack graphs in forensic examinations”. In: 2012
Seventh International Conference on Availability, Reliability
and Security. IEEE. 2012, pp. 596–603.

[38] Heiko Mantel and Christian W Probst. “On the meaning
and purpose of attack trees”. In: 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE. 2019, pp. 184–
18415.

[39] Bill Marczak et al. “An Analysis of China’s “Great Cannon””.
In: 5th USENIX Workshop on Free and Open Communications
on the Internet (FOCI 15). USENIX Association, 2015.

[40] Bill Marczak et al. “China’s great cannon”. In: Citizen Lab
10 (2015).

[41] Simon Meier et al. “The TAMARIN Prover for the Symbolic
Analysis of Security Protocols”. In: Computer Aided Verifica-
tion. Springer Berlin Heidelberg, 2013, pp. 696–701. (Visited
on 01/20/2020).

[42] A. Melnikov. “Updated Transport Layer Security (TLS) Server
Identity Check Procedure for Email-Related Protocols”. In:
Request for Comments 7817 (2016).

[43] Merrill Morris and Christine Ogan. “The Internet as Mass
Medium”. In: Journal of Computer-Mediated Communication
1.4 (1996). JCMC141.

[44] MyEtherWallet. A MESSAGE TO OUR COMMUNITY - a
Response to the DNS HACK of April 24th 2018. URL: https://
medium.com/@myetherwallet/a-message-to-our-community-
a - response - to - the - dns - hack - of - april - 24th - 2018 -
26cfe491d31c (visited on 06/04/2020).

[45] Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo Richarte.
“Attack planning in the real world”. In: arXiv preprint
arXiv:1306.4044 (2013).

[46] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel.
“MulVAL: A Logic-based Network Security Analyzer.” In:
USENIX security symposium. Baltimore, MD. 2005, pp. 113–
128.

[47] Cynthia Phillips and Laura Painton Swiler. “A graph-based
system for network-vulnerability analysis”. In: Proceedings of
the 1998 workshop on New security paradigms. 1998, pp. 71–
79.

[48] Eric Rescorla and Tim Dierks. “The transport layer security
(TLS) protocol version 1.3”. In: (2018).

[49] Bruce Schneier. Schneier on Security - Attack Trees. 1999.
URL: https://www.schneier.com/academic/archives/1999/12/
attack trees.html.

[50] O. Sheyner et al. “Automated generation and analysis of attack
graphs”. In: Proceedings 2002 IEEE Symposium on Security
and Privacy. IEEE Comput. Soc, 2002, pp. 273–284. (Visited
on 02/06/2020).

[51] Milivoj Simeonovski et al. “Who Controls the Internet?
Analyzing Global Threats using Property Graph Traversals”.
In: Proc. of the 26rd International Conference on World Wide
Web (WWW 2017). pub id: 1147 Bibtex: SiPeRoBa 17:www
URL date: None. 2017.

[52] Patrick Speicher et al. “Formally Reasoning about the Cost and
Efficacy of Securing the Email Infrastructure”. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P).
IEEE. 2018, pp. 77–91.

[53] Patrick Speicher et al. “Stackelberg planning: Towards effective
leader-follower state space search”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[54] Giorgio Di Tizio. “Pareto-Optimal Defensive Strategies Against
JavaScript Injections”. MA thesis. University of Trento, 2018.

[55] Yong-Jie Wang et al. “Study of network security evaluation
based on attack graph model”. In: JOURNAL-CHINA INSTI-
TUTE OF COMMUNICATIONS 28.3 (2007), p. 29.

[56] Jianping Zeng et al. “Survey of Attack Graph Analysis Methods
from the Perspective of Data and Knowledge Processing”. In:
Security and Communication Networks 2019 (2019).

http://www.ietf.org/rfc/rfc3207.txt
http://www.ietf.org/rfc/rfc3207.txt
https://www.ssllabs.com/ssl-pulse/
https://medium.com/@myetherwallet/a-message-to-our-community-a-response-to-the-dns-hack-of-april-24th-2018-26cfe491d31c
https://medium.com/@myetherwallet/a-message-to-our-community-a-response-to-the-dns-hack-of-april-24th-2018-26cfe491d31c
https://medium.com/@myetherwallet/a-message-to-our-community-a-response-to-the-dns-hack-of-april-24th-2018-26cfe491d31c
https://medium.com/@myetherwallet/a-message-to-our-community-a-response-to-the-dns-hack-of-april-24th-2018-26cfe491d31c
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Listing 1: Queries in ProVerif
query m:provider , n:provider , m’:dom , n’:dom ,
e:ip, d:dom , g:ip, r:ip, i:ip, j:ip;
event(Unconf(m,n))

==> (event(isMailserver(m’,m))
&& event(A_record(i,m’))
&& event(C_ip(i)))

|| (event(isMailserver(n’,n))
&& event(A_record(i,n’))
&& event(C_ip(i)))

|| (event(isMailserver(m’,m))
&& event(A_record(i,m’))
&& event(Received(n,d,r))
&&(

(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(C_ip(g)))

||(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(UsedDomServer(g,e))
&& event(C_ip(e)))

||(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(C_routing(i,g)))

||(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(UsedDomServer(g,e))
&& event(C_routing(g,e))
&& event(nDNSSEC(n))))
)

|| (event(isMailserver(m’,m))
&& event(A_record(i,m’))
&& event(queries_prov(i,n))
&& event(Received(n,d,j))
&& event(C_routing(i,j))).

query x:provider , d:dom , m:ip, e:ip, f:ip,
g:ip;
event(Received(x,d,m))

==> (event(Register_MX(x,d))
&& event(Register_A(d,m)))

|| (event(queries_prov(f,x))
&& event(C_ip(f)))

|| (event(queries_prov(f,x))
&& event(Resolver(f,g))
&& event(C_ip(g)))

|| (event(queries_prov(f,x))
&& event(Resolver(f,g))
&& event(C_routing(f,g)))

|| (event(queries_prov(f,x))
&& event(Resolver(f,g))
&& event(UsedDomServer(g,e))
&& event(C_routing(g,e))
&& event(nDNSSEC(x)))

|| (event(queries_prov(f,x))
&& event(Resolver(f,g))
&& event(UsedDomServer(g,e))
&& event(C_ip(e))).

APPENDIX

A. ProVerif queries

In this section, we will present the complete threat model
described in [52]. Hence, the following will be freely, but
completely cited from [52], except for the modifications marked
in bold orange.

We will give each rule, followed by the intuition of what
kind of attack it represents.

1) Initially Compromised Nodes:

Rule A.1 — rinit´loc in [52] . All autonomous systems, IPs
and domains associated to the attacking country are initially

under control of the attacker.

x P ASY IPY Dom cn P Cntry x
LOC
ÝÝÑ n Cpcnq

Cpxq

Rule A.2 —rinit´as [52]. If an AS is under the control of the
attacker, any IP which is part of the AS is also under control
of the attacker.

i P IP a P AS i
ORIG
ÝÝÝÑ a Cpaq

Cpiq

Rule A.3 —rinit´dom [52]. If an IP is under the control of
the attacker, any domain that resolves to it (even if the attacker
cannot interfere with the resolution) is also under the control
of the attacker.

d P Dom i P IP d
A
ÝÑ i Cpiq

Cpdq

Rule A.4 —rinit´ip (this rule is new). If a domain is under
the control of the attacker, any IP it resolves to (even if the
attacker cannot interfere with the resolution) is also under the
control of the attacker.

d P Dom i P IP d
A
ÝÑ i Cpdq

Cpiq

2) Attacks via Routing:

Rule A.5 — rinjection [52] . If the attacker controls an AS
which transfers packets from a domain m to some IP address
belonging to n and this particular connection is not secured
via the VPN mitigations, we assume that the integrity of the
communication from m P Dom to n P Dom is compromised.

d, e P Dom i,jPIP a,b,cPAS Cpbq nVPNpa,cq

d
A
ÝÑi e

A
ÝÑ j i

ORIG
ÝÝÝÑa j

ORIG
ÝÝÝÑc a

RTEppqbq
ÝÝÝÝÝÑc

IRpi, jq

On the resolution and application level we are only concerned
with communication between domains. Thus this rule covers
all relevant routing attacks.

3) Integrity of domain/MX resolution:

Rule A.6 — rdns´ns [52] . If the attacker controls any name
server that could be queried during resolution, we consider the
integrity of the domain name resolution compromised.

d, e P Dom d
DNS
ÝÝÝÑ e e

A
ÝÑ i Cpiq

IDNSpdq

Although unspecified by RFC 3207, name servers commonly
attach an A record whenever they respond to a resolution
request with an DNS entry pointing to another name server [28].
This speeds up the resolution and has the pleasant side-effect
that the integrity of the resolution does not depend on whether
these authoritative the integrity of the resolution of the domain
names of the name servers requested, hence the transitive rule
for IDNS is not at the attacker’s disposal.

Rule A.7 — rdns´res [52] . If the attacker controls the resolver
of a domain, we consider the integrity of any domain name
resolution this domain attempts compromised. (Technically, r
is an IP address, but we simplified this and the following rule
for presentation.)

d, e P Dom i P IP d
RES
ÝÝÑ i Cpiq

IDNSpd, eq

Rule A.8 —rdns´route´res [52] . If the attacker controls the
route from a domain to the resolver this domain uses, we
consider the integrity of any domain name resolution this
domain attempts compromised , unless the integrity of the
resolution is guaranteed by DNSSEC.

d, e P Dom i P IP d
RES
ÝÝÑ r d

A
ÝÑ i IRpi, rq nDNSSEC(e)

IDNSpd, eq

Rule A.9 — rdns´route´ns [52] . If the attacker controls
the route from a resolver to some authoritative name server
potentially queried during resolution, we consider the integrity
of the resolution for this domain name compromised, unless
the integrity of the resolution is guaranteed by DNSSEC.

d,e,fPDom r P IP d
RES
ÝÝÑr e

DNS
ÝÝÝÑf

f
A
ÝÑ i IRpr,iq nDNSSECpeq

IDNSpd, eq

4) Confidentiality:

Rule A.10 — rcompromise [52] . If a mail server is already
compromised, e.g., if it is hosted by an adversarial country,
the attacker can compromise the confidentiality of the commu-
nication between two mail providers.

d,ePProvider d
MX
ÝÝÑd1 e

MX
ÝÝÑe1

d1
A
ÝÑ d2 e1

A
ÝÑ e2 Cpe11q_Cpd2q

unconfpd, eq

Rule A.11 — rfake´mx [52] . If the sender does not enforce
strict host validation, e.g., by using optimistic STARTTLS, the
attacker can compromise the confidentiality of the communi-
cation between two mail providers by changing a provider’s
MX record to point to a domain under her control.

d,ePProvider d‰e d
MX
ÝÝÑd1

nTLSsnd
pdq IDNS

peq_IDNS
pd1,eq

unconfpd, eq

Rule A.12 — rfake´ip[52] . If the sender does not enforce
strict host validation, e.g., by using optimistic STARTTLS, the
attacker can compromise the confidentiality of the communi-
cation between two mail providers by pointing the domain of
the MX to an IP of her choice.

d,ePProvider d‰e d
MX
ÝÝÑd1 e

MX
ÝÝÑe1

IDNS
pe1q_IDNS

pd1,e1q nTLSsnd
pdq

unconfpd, eq

Rule A.13 — rintercept [52] . If the sender does not enforce
strict host validation, e.g., she is using optimistic STARTTLS,

and DANE is not deployed, the attacker can compromise
the confidentiality of the communication between two mail
providers by intercepting packets on the route between their
respective mail servers.

d,ePProvider d‰e d
MX
ÝÝÑd1 e

MX
ÝÝÑe1

d1
A
ÝÑ d2 e1

A
ÝÑ e2 IRpd2, e2q nTLSsnd

pdq nDANErcv
peq

unconfpd, eq

Rule A.14 — rfake´mx´strict [52] . If the sender does not
enforce certificate validation according to RFC 7817, e.g., by
using optimistic STARTTLS or strict validation on the hostname
only, the attacker can compromise the confidentiality of the
communication between two mail providers by changing a
provider’s MX record to point to a domain under her control.

d,ePProvider d‰e d
MX
ÝÝÑd1

IDNS
peq_IDNS

pd1,eq nRFC7817pdq

unconfpd, eq

B. Lemmas

Before proving Theorem 3, we present the proofs to the two
process transformations from Section VIII-B .

Proof of Lemma 2. We can show that for every trace of the
process inpvq.Q1, the same trace can be produced by Q. In the
first process, the adversary has to choose what term it binds
to the free variable v in the beginning. Therefore, it needs to
deduce T from the frame, s.t. νE .δ $ t. Comparing to Q, we
can deduct the same term T by replacing inpvq.Q1 with Q
in the same configuration. Since no rule of our operational
semantics deletes any information from the frame, we are able
to deduce T at any point during the process execution of Q.
This allows us to substitute v with T in both processes, leading
to the same set of traces (since the rest of the processes is the
same by construction.)

Proof. To proof Lemma 1, we start by applying (repl) (see
Figure 4)

∣∣ÝÑPN
∣∣ times to the process !inpÝÑv q.P q and get a

new process Q “!inpÝÑv q.P q | inpÝÑv q.P q | ... | inpÝÑv q.P q
l jh n∣∣∣∣ÝÑPN

∣∣∣∣
. The

variables ÝÑv in the right process of Lemma 1 are substituted
by public names provided by G. We apply the rule (in) also∣∣ÝÑPN

∣∣ times on Q and the adversary can input the same public
names as provided by G since all public names are deducible
from the frame. With this transformation of Q we get exactly
!inpÝÑv q.P q |‖

ÝÑp

P t
!

ÝÑp {ÝÑv

)

u. Hence, we can conclude that

tracesp!inpÝÑv q.P q “ tracesp!inpÝÑv q.P q |‖
ÝÑp

P t
!ÝÑp {ÝÑv

)

uq

Ě tracesp‖
ÝÑp

P t
!ÝÑp {ÝÑv

)

uq

Proof of Theorem 3. First, we rearrange the ||-quantification
in FpGq (see Figure 6), so that ÝÑp consists of all assignments to
the meta-variables8 x, y and z. (By definition, || is associative
and commutative.) For the reader’s convenience, we index the
applied-π variables with the meta-variable they replace.

tracespFpGqq “ traces

¨

˚

˚

˝‖
ÝÑp

Pproto

!ÝÑp {ÝÑv

)

˛

‹

‹

‚

,

where Pproto “!Psmtp-clientp
ÝÑx c,ÝÑx s,ÝÑx RES

q |!Psmtp-server

pÝÑy s,ÝÑy c
q |!Presp

ÝÑz RES,ÝÑz c,ÝÑz DNS,ÝÑz RNS
q |!Pnsp

ÝÑu DNS,
ÝÑu RES

q |!Prnsp
ÝÑw RNS,ÝÑw RES

qq (compare with Figure 6).
Therefore, by applying Lemma 1 we get:

Ď traces p!inpÝÑv q.Pprotoq

Note that all variables are uniquely named. We can hence
exhaustively apply Lemma 2 to P to push all variables in ÝÑv
to the inside far enough that the resulting process P 1proto equals
P (compare with full model in Appendix C.). Verifying the
syntactical equivalence, we obtain:

Ď tracespP q.

C. Full model

8The ||-notation is a syntactic shortcut on the mathematical level, hence
the variables it binds are mathematical variables, not ProVerif variables. They
stand for nodes in the graph, which we assumed to be public names.

Listing 2: Full ProVerif model
free c: channel.

(*

This model is a process used to establish the soundness results in

Dax , Kunnemann: On the Soundness of Infrastructure Adversaries

It covers network of clients and servers running the SMTP , DNS and DNSSEC
protocols in a setting that civers a simplified version of inter -AS
communication. Hence the attacker must corruption communication channels before
being able to eavesdrop.

Notes:

We use 9 private constructor symbols , 6 for modeling communication that is
secure until corruption , and 4 to deal with state that is secure until
corruption.

** Communication :** The protocol for establishing a communication channel is as
follows. Say A wants to communicate with B.

1. At initialization time , A broadcasts information about himself: IP, domain ,
AS, depending on the context , association of an abstract provider (e.g., "I
am a mail server of google "). This information is bundled in transparent
constructors , i.e., constructors that can be deconstructed without any
additional secrets. Their purpose is to keep the model maintainable , and
they are marked with a ‘_info ‘ suffix. Their type is ‘service ‘.

2. (same for B)
3. A is instructed by the adversary whom to communicate with --- this is the

standard way of modeling arbitrary communication patterns. The communication
partner is identified by a term of type ‘service ‘ as output in step 1.$ˆ1$

4. (same for B)
5. A choses a source port and uses ‘c_communicate_src_port ‘ to communicate it

to B. The function symbol is private , but it has a destructor for the source
port , meaning that this information is revealed to the attacker. It does not
have a destructor for the description of the target service , which is
admittedly unintuitive , but was necessary to speed up verification time. As
this information is shared at initialization time , it is always available to
the attacker anyway. We typed this parameter (type ‘service ‘), so we can
ensure that the function symbol is indeed used that way.

6. B unpacks this source port using the destructor for
‘c_communicate_src_port ‘.

7. Then the source ports are exchanged in the other direction , B repeats step
5, but for the function symbol ‘r_communicate_src_port ‘.

8. A receives the source port with the destructor for ‘r_communicate_src_port ‘.
9. Now both parties can build the key that identifies these channels with the

function symbol ‘chanbuilder ‘. There are , in fact , two channels , one for
messages from A to B, and another for messages from B to A. A party that
knows the channel (i.e., a ‘chanbuilder -‘term , i.e., a term of type ‘chan ‘)
can obtain the message on this channel using the destructor ‘get_req_packet ‘.

$ˆ1$ The exception is the SMTP client process , in which the attacker supplies
only the provider (e.g., "google.com"), as this is the information that the
SMTP client has in the real -world (e.g., through the To: field in the email).
Instead , the IP and domain are obtained using the DNS resolver process.

There are five private function symbols for communicating the source port that
way , one for every role in the protocol , plus the ‘chanbuilder ‘ function symbol
that sets up the channel (of type ‘chan ‘). Why is such a complicated protocol
necessary? As outlined in the paper , we use the ‘chanbuilder ‘ terms to
establish private -but -asynchronous channels. Hence the need for ‘chanbuilder ‘
to be private. As in the IP protocol , the channel is identified by source and
destination IP and port. Hence , these need to be communicated to set up that

channel. In the IP protocol , this is part of a handshake. An alternative and
seemingly more natural modeling would be to allow to extract the source port
from a ‘chanbuilder ‘-term , however , in that modeling , a channel could only be
corrupted once the first message has been sent. Our modeling ensures that
a channel can be corrupted before the first message is being sent. This
explains the need to send the source port before the first message. The message
that communicates the source port is in a private constructor to ensure
authenticity , so that a channel cannot be manipulated *before* it is corrupted.
The terms within that constructor are public or can be computed. We have five
different versions of this constructor , one for each party , to again improve
verification time. This is a valid modeling choice because in the real world ,
the message that communicates the source port identifies the intended protocol
type and role of the sender via the destination port.

** Storage **: The four remaining private function symbols are used instead of
a global storage (we use ProVerif ’s ‘table ‘ feature only for the publicly known
public keys of DNSSEC root servers). They represent local database entries
created on initiasation.

- ‘register_server ‘ binds an SMPT servers domain to an IP. This is only
used by the authoritative nameserver , where it represents its local
registration DB. They are generated in the top -level process upon
initalisation , where they are controlled by the attacker , but cannot
be changed later. It is used to answer ‘A‘-requests.

- ‘register_provider ‘ binds providers (the part of email addresses
after the "@") to the domains providing SMTP services for them. It is
set up just like ‘register_server ‘ but is used to handle
‘MX‘-requests.

- ‘register_ns ‘ binds nameserver to their public keys. ‘register_ns ‘ terms
are used by the root server to provide the public key of the authoritative
nameserver directly below it. They , again , correspond to a local
registration database , are used nowhere else and are controlled by the
attacker upon initialisation , but not later.

- ‘valid_prov ‘ marks a valid provider , e.g., "google.com". This corresponds
to the public (or the part of the public covered when Speicher et al
consider , e.g., the Top -10 providers) knowing which provider they use.

There are at least two other established ways of implementing a local store.
First are ProVerif ’s tables , which implements a key/value store. Unfortunately ,
it was not readily clear what could provide a key. Neither domain , IP or AS are
unique identifiers , hence values would risk being overwritten. The second are
private channels , which , giving our experiences with the modelling of
communication channels , we were worried about slowing down verification.

*)

(* types *)
type provider.
type dom.
type ip.
type as.
type port.
type service.
type chan.
type regis.
type com.

(* DNSSEC PKI trustbase *)
table trustbase(port , bitstring).

(* global names*)
free CLIENT_PORT:port.
free SERVER_PORT:port.
free RES_PORT:port.
free NS_PORT:port.

free ROOT_PORT:port.

free OK:bitstring.

(* signature *)
fun vk(bitstring):bitstring. (* vk/1 *)
fun sign(bitstring ,bitstring):bitstring. (* sign/2 *)
reduc forall sk:bitstring , m:bitstring; readsign(sign(sk,m)) = m.
reduc forall sk:bitstring , m:bitstring; verify(vk(sk), m, sign(sk,m)) = true.

(* pairs *)
fun pair(bitstring ,bitstring):bitstring [data].

(* mx pairs *)
fun mx_pair(provider ,dom):bitstring.
reduc forall x:provider , y:dom; mx_fst(mx_pair(x,y))=x.
reduc forall x:provider , y:dom; mx_snd(mx_pair(x,y))=y.

(* rr pairs *)
fun rr_pair(dom ,ip):bitstring.
reduc forall x:dom , y:ip; rr_fst(rr_pair(x,y))=x.
reduc forall x:dom , y:ip; rr_snd(rr_pair(x,y))=y.

(* ds pairs *)
fun ds_pair(service ,bitstring):bitstring.
reduc forall x:service , y:bitstring; ds_fst(ds_pair(x,y))=x.
reduc forall x:service , y:bitstring; ds_snd(ds_pair(x,y))=y.

(* dnssec response wrapper *)
fun dnssec_resp(bitstring , bitstring , bitstring , bitstring , bitstring):bitstring [data].

(* request A record *)
fun request_dom(dom):bitstring.
reduc forall x:dom; get_dom_request(request_dom(x))=x.

(* request MX record *)
fun request(provider):bitstring.
reduc forall x:provider; get_request_prov(request(x))=x.

(* dnssec request A record *)
fun dnssec_request(dom):bitstring.
reduc forall x:dom; get_dnssec_dom(dnssec_request(x))=x.

(* dnssec request MX record *)
fun dnssec_request_prov(provider):bitstring.
reduc forall x:provider; get_dnssec_prov(dnssec_request_prov(x))=x.

(* answer A record *)
fun answer(bitstring ,ip,dom):bitstring.
reduc forall x:bitstring , y:ip, z:dom; check_answer_req(answer(x,y,z))=x.
reduc forall x:bitstring , y:ip, z:dom; get_answer_ip(answer(x,y,z))=y.
reduc forall x:bitstring , y:ip, z:dom; get_answer_dom(answer(x,y,z))=z.

(* answer MX record *)
fun answer_dom(bitstring ,provider ,dom):bitstring.
reduc forall x:bitstring , y:provider , z:dom; check_req_answer(answer_dom(x,y,z))=x.
reduc forall x:bitstring , y:provider , z:dom; get_prov_answer(answer_dom(x,y,z))=y.
reduc forall x:bitstring , y:provider , z:dom; get_dom_answer(answer_dom(x,y,z))=z.

(* SMTP message wrapper *)
fun smtp_req(ip,ip,bitstring):bitstring.
reduc forall x:ip, y:ip, z:bitstring; smtp_fst(smtp_req(x,y,z))=x.
reduc forall x:ip, y:ip, z:bitstring; smtp_snd(smtp_req(x,y,z))=y.
reduc forall x:ip, y:ip, z:bitstring; smtp_third(smtp_req(x,y,z))=z.

(* private channel wrapper using secret value x:chan - requests *)
fun req_packet(chan ,bitstring):bitstring.
reduc forall x:chan , y:bitstring; get_req_packet(x,req_packet(x,y))=y.

(* private channel wrapper using secret value x:chan - answers *)
fun ans_packet(chan ,bitstring):bitstring.
reduc forall x:chan , y:bitstring; get_ans_packet(x,ans_packet(x,y))=y.

(* public client information *)
fun client_info(provider ,as,ip,dom):service.
reduc forall a:provider , b:as, x:ip, d:dom; get_client_prov(client_info(a,b,x,d))=a.
reduc forall a:provider , b:as, x:ip, d:dom; get_client_as(client_info(a,b,x,d))=b.
reduc forall a:provider , b:as, x:ip, d:dom; get_client_ip(client_info(a,b,x,d))=x.
reduc forall a:provider , b:as, x:ip, d:dom; get_client_dom(client_info(a,b,x,d))=d.

(* public server information *)
fun server_info(provider ,as,ip,dom):service.
reduc forall a:provider , b:as, x:ip, d:dom; get_server_prov(server_info(a,b,x,d))=a.
reduc forall a:provider , b:as, x:ip, d:dom; get_server_as(server_info(a,b,x,d))=b.
reduc forall a:provider , b:as, x:ip, d:dom; get_server_ip(server_info(a,b,x,d))=x.
reduc forall a:provider , b:as, x:ip, d:dom; get_server_dom(server_info(a,b,x,d))=d.

(* public resolver information *)
fun res_info(dom ,ip,as):service.
reduc forall a:dom , b:ip, x:as; get_res_dom(res_info(a,b,x))=a.
reduc forall a:dom , b:ip, x:as; get_res_ip(res_info(a,b,x))=b.
reduc forall a:dom , b:ip, x:as; get_res_as(res_info(a,b,x))=x.

(* public NS information *)
fun dns_info(dom , ip, as):service.
reduc forall a:dom , b:ip, x:as; get_dns_dom(dns_info(a,b,x))=a.
reduc forall a:dom , b:ip, x:as; get_dns_ip(dns_info(a,b,x))=b.
reduc forall a:dom , b:ip, x:as; get_dns_as(dns_info(a,b,x))=x.

(* public root NS information *)
fun root_info(dom , ip, as):service.
reduc forall a:dom , b:ip, x:as; get_root_dom(root_info(a,b,x))=a.
reduc forall a:dom , b:ip, x:as; get_root_ip(root_info(a,b,x))=b.
reduc forall a:dom , b:ip, x:as; get_root_as(root_info(a,b,x))=x.

(* wrapper for NS resolution , root NS requests *)
fun ask(service):bitstring.
reduc forall x:service; get_ask(ask(x))=x.

(* The following constructor symbols are flagged as private. All these constructors are used to
exchange information between subprocesses. As there are no pre -shared secrets and we require
authenticated information exchange , we use these private constructors as trusted channels.
With flagging constructors as private , the adversary cannot use the constructor and hence all
occurrences of these constructors are honestly generated. The authenticated information

exchange
is needed by our custom threat model as we require an adversary to corrupt a connection before
it can use its Dolev -Yao model power. *)

(* trusted registration for A records of mailservers *)
fun register_server(dom ,ip):regis [private].
reduc forall x:dom , y:ip; get_ip(x,register_server(x,y))=y.

(* register MX records *)
fun register_provider(provider ,dom):service [private].
reduc forall a:provider , x:dom; get_valid_prov(register_provider(a,x))=a.
reduc forall a:provider , x:dom; get_valid_dom(register_provider(a,x))=x.

(* providers who registered a mailserver able to receive messages *)
fun valid_prov(provider):provider [private].
reduc forall a:provider; get_prov_valid(valid_prov(a))=a.

(* trusted registration for name servers *)

fun register_ns(service ,bitstring):regis [private].
reduc forall x:service , y:bitstring; get_chan(x,register_ns(x,y))=y.

fun c_communicate_src_port(service ,port):com [private].
reduc forall x:service , y:port; c_get_src_port(x,c_communicate_src_port(x,y))=y.

fun s_communicate_src_port(ip,port):com [private].
reduc forall x:ip, y:port; s_get_src_port(x,s_communicate_src_port(x,y))=y.

fun r_communicate_src_port(service ,port):com [private].
reduc forall x:service , y:port; r_get_src_port(x,r_communicate_src_port(x,y))=y.

fun d_communicate_src_port(service ,port):com [private].
reduc forall x:service , y:port; d_get_src_port(x,d_communicate_src_port(x,y))=y.

fun a_communicate_src_port(service ,port):com [private].
reduc forall x:service , y:port; a_get_src_port(x,a_communicate_src_port(x,y))=y.

(* private constructor to build channels between two parties *)
fun chanbuilder(ip,port ,ip,port):chan [private].

(* events *)
event Received(provider ,dom ,ip).
event Register_A(dom ,ip).
event Register_MX(provider ,dom).
event C_ip(ip).
event C_as(as).
event queries(ip,dom).
event queries_prov(ip,provider).
event Resolver(ip,ip).
event C_routing(ip,ip).
event UsedDomainServer(ip,ip).
event isMailserver(dom ,provider).
event Routing(as,as,as).
event Unconf(provider ,provider).
event A_record(ip,dom).
event nDNSSEC(provider).
event IPinAS(ip,as).

(* Unconf Query *)
query m:provider , n:provider , m’:dom , n’:dom , e:ip, d:dom ,

f:dom , g:ip ,x:as, y:as, z:as, r:ip, i:ip, j:ip;
event(Unconf(m,n)) ==> (event(isMailserver(m’,m)) (*r-compromise *)

&& event(A_record(i,m’))
&& event(C_ip(i)))

|| (event(isMailserver(n’,n)) (*r-compromise *)
&& event(A_record(i,n’))
&& event(C_ip(i)))

|| (event(isMailserver(m’,m)) (*r-fake -mx,*)
&& event(A_record(i,m’)) (*r-fake -ip,*)
&& event(Received(n,d,r)) (*r-fake -mx-strict *)
&&(

(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(C_ip(g)))

||(event(queries_prov(i,n))

&& event(Resolver(i,g))
&& event(UsedDomainServer(g,e))
&& event(C_ip(e)))

||(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(C_routing(i,g)))

||(event(queries_prov(i,n))
&& event(Resolver(i,g))
&& event(UsedDomainServer(g,e))
&& event(C_routing(g,e))
&& event(nDNSSEC(n)))))

|| (event(isMailserver(m’,m)) (*r-intercept *)
&& event(A_record(i,m’))
&& event(queries_prov(i,n))
&& event(Received(n,d,j))
&& event(C_routing(i,j))).

(* Integrity Query *)
query x:provider , a:as, b:as, z:as, d:dom , n:ip, m:ip, p:ip, e:ip, f:ip, g:ip;

event(Received(x,d,m)) ==> (event(Register_MX(x,d))
&& event(Register_A(d,m))) (* Sanity check*)

|| (event(queries_prov(f,x)) (* Sanity check*)
&& event(C_ip(f)))

|| (event(queries_prov(f,x))(*r-dns -res*)
&& event(Resolver(f,g))
&& event(C_ip(g)))

|| (event(queries_prov(f,x)) (*r-dns -route -res*)
&& event(Resolver(f,g))
&& event(C_routing(f,g)))

|| (event(queries_prov(f,x)) (*r-dns -route -ns*)
&& event(Resolver(f,g))
&& event(UsedDomainServer(g,e))
&& event(C_routing(g,e))
&& event(nDNSSEC(x)))

|| (event(queries_prov(f,x)) (*r-dns -ns*)
&& event(Resolver(f,g))
&& event(UsedDomainServer(g,e))
&& event(C_ip(e))).

(* Root Nameserver *)
let root_server(dom_root:dom , ip_root:ip, AS:as) =

(* Receive public information of the resolver process *)
in(c, reswrap:service);
!(
(* Choose fresh source port for each session *)
new port_root:port;
out(c,port_root);
(* Send src port over trusted channel to communication partner. The previous line seems
redundant since the
adversary can gain the same knowledge as the key to the private constructor is publically
known. We keep this redundance because
the first line expresses that the port is publically known , whereas the second represents
that it is sent over a trusted channel. *)
out(c, a_communicate_src_port(root_info(dom_root ,ip_root ,AS),port_root));
(* Choose new DNSSEC keys each session.*)
new ksk:bitstring;
out(c,vk(ksk));
new zsk:bitstring;
out(c,vk(zsk));
(* distribute the public part of the key signing key to the trustbase *)
insert trustbase(port_root , vk(ksk));
let ip_res = get_res_ip(reswrap) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let rootchan = chanbuilder(ip_root ,port_root ,ip_res ,RES_PORT) in

in(c, res_packed_src_port:com);
let port_res = r_get_src_port(reswrap ,res_packed_src_port) in
let rootchan2 = chanbuilder(ip_res ,port_res ,ip_root ,ROOT_PORT) in
(
((* Receive a request from a resolver *)

in(c, req:bitstring);
let pack = get_req_packet(rootchan2 , req) in
(* Let adversary provide the information of the *)
(* nameserver in charge of the requested zone *)
in(c ,dnswrap:service);
let askdns = ask(dnswrap) in

out(c, req_packet(rootchan ,askdns))
)

|
((* Receive a request from a resolver *)

in(c, dnssec_req:bitstring);
let dnssec_pack = get_req_packet(rootchan2 , dnssec_req) in

(* Let adversary provide the information of the *)
(* nameserver in charge of the requested zone *)
in(c ,dnssecwrap:service);

(* Check that the nameserver is registered for *)
(* DNSSEC and receive its public ksk *)
in(c, registration_ns:regis);
let pk_dns = get_chan(dnssecwrap ,registration_ns) in

(* Prepare DS record and answer the resolver *)
let answer_dns = ds_pair(dnssecwrap ,pk_dns) in

let rr = pair(vk(zsk),vk(ksk)) in
let rr_sig = sign(ksk , rr) in

let ds = answer_dns in
let ds_sig = sign(zsk , ds) in

let dnssec_comb_message = dnssec_resp(answer_dns ,rr,rr_sig ,ds,ds_sig) in
out(c, req_packet(rootchan ,dnssec_comb_message))

)
))
.

(* Authorative Nameserver *)
let dns_server(dom_dns:dom ,ip_dns:ip,AS:as) =

(* Receive public information of the resolver process *)
in(c, reswrap:service);
!(
(* Choose fresh source port for each session *)
new port_dns:port;
(* Give source port to the adversary *)
out(c,port_dns);
(* Send src port over trusted channel to communication partner. The previous line seems
redundant since the
adversary can gain the same knowledge as the key to the private constructor is publically
known. We keep this redundance because
the first line expresses that the port is publically known , whereas the second represents
that it is sent over a trusted channel. *)
out(c,d_communicate_src_port(dns_info(dom_dns ,ip_dns ,AS),port_dns));
(* Choose new DNSSEC keys each session.*)
new ksk:bitstring;
out(c,vk(ksk));
new zsk:bitstring;
out(c,vk(zsk));
(* distribute the public part of the key signing key to the trustbase *)
out(c, register_ns(dns_info(dom_dns ,ip_dns ,AS), vk(ksk)));
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let ip_res = get_res_ip(reswrap) in
let dnschan = chanbuilder(ip_dns ,port_dns ,ip_res ,RES_PORT) in
in(c, port_packet_src_res:com);
let port_res = r_get_src_port(reswrap ,port_packet_src_res) in
let dnschan2 = chanbuilder(ip_res , port_res , ip_dns , NS_PORT) in
(

((* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_ip(ip_dns);
out(c,ksk);
out(c,zsk);
out(c,dnschan);
out(c,dnschan2))
|
((* Corrupted AS -> all IPs located in this AS are leaked -> *)
(* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_as(AS);
event C_ip(ip_dns);
out(c,ksk);
out(c,zsk);
out(c,dnschan);
out(c,dnschan2))
|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter2:as);
let as_res = get_res_as(reswrap) in
event Routing(as_res , inter2 , AS);
event C_as(inter2);
event C_routing(get_res_ip(reswrap),ip_dns);
out(c,dnschan))
|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter21:as);
let as_res1 = get_res_as(reswrap) in
event Routing(as_res1 , inter21 , AS);
event C_as(inter21);
event C_routing(get_res_ip(reswrap),ip_dns);
out(c,dnschan2))
|
((* Receive MX record request from resolver *)
in(c, req:bitstring);
let real_pack = get_req_packet(dnschan2 , req) in

let provi = get_request_prov(real_pack) in
(* Adversary provides a valid (priory registered) MX record *)
in(c, valid:service);

let provj = get_valid_prov(valid) in
if provi = provj then

let dom_prov = get_valid_dom(valid) in
out(c, ans_packet(dnschan ,answer_dom(real_pack , provi , dom_prov)))

)
|
((* Receive A record request from resolver *)
in(c, req2:bitstring);
let real_pack2 = get_req_packet(dnschan2 , req2) in

let domi = get_dom_request(real_pack2) in
in(c, registration:regis);
(* Adversary provides a valid (priory registered) A record *)

let ip4=get_ip(domi ,registration) in
out(c, ans_packet(dnschan ,answer(real_pack2 , ip4 , domi)))

)
|
((* Receive MX record , DNSSEC request from resolver *)
in(c, dnssec_req:bitstring);
let dnssec_pack = get_req_packet(dnschan2 , dnssec_req) in

let domi = get_dnssec_dom(dnssec_pack) in
(* Adversary provides a valid (priory registered) A record *)

in(c, registration:regis);
let ip4=get_ip(domi ,registration) in
(* Prepare A record and answer the resolver *)
let answer_dns = rr_pair(domi ,ip4) in

let rr = pair(vk(zsk),vk(ksk)) in
let rr_sig = sign(ksk , rr) in

let a_rec = answer_dns in
let a_sig = sign(zsk , a_rec) in

let dnssec_comb_message = dnssec_resp(answer_dns ,rr,rr_sig ,a_rec ,a_sig)
in

out(c, ans_packet(dnschan ,dnssec_comb_message))
)

|
((* Receive A record , DNSSEC request from resolver *)
in(c, dnssec_req2:bitstring);
let dnssec_pack = get_req_packet(dnschan2 , dnssec_req2) in

let provi = get_dnssec_prov(dnssec_pack) in
(* Adversary provides a valid (priory registered) MX record *)

in(c, valid:service);
let provj = get_valid_prov(valid) in

if provi = provj then
let dom_prov = get_valid_dom(valid) in
(* Prepare MX record and answer the resolver *)
let answer_dns2 = mx_pair(provi ,dom_prov) in

let rr = pair(vk(zsk),vk(ksk)) in
let rr_sig = sign(ksk , rr) in

let mx_rec = answer_dns2 in
let mx_sig = sign(zsk , mx_rec) in

let dnssec_comb_message2 = dnssec_resp(answer_dns2 ,rr,rr_sig ,mx_rec ,
mx_sig) in

out(c, ans_packet(dnschan ,dnssec_comb_message2))
)

))
.

let resolver(dom_res:dom ,ip_res:ip,AS:as) =
(* Receive public information of the root NS process *)
in(c, rootwrap:service);
(* Receive public information of the client MX process *)
in(c, clientwrap:service);
!(
(* Choose fresh source port for each session *)
new port_res:port;
out(c,port_res);
(* Send src port over trusted channel to communication partner. The previous line seems
redundant since the
adversary can gain the same knowledge as the key to the private constructor is publically
known. We keep this redundance because
the first line expresses that the port is publically known , whereas the second represents
that it is sent over a trusted channel. *)
out(c, r_communicate_src_port(res_info(dom_res ,ip_res ,AS),port_res));
let root_ip = get_root_ip(rootwrap) in
let client_ip = get_client_ip(clientwrap) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let resolverchan = chanbuilder(ip_res ,port_res , root_ip , ROOT_PORT) in
in(c, root_packed_src_port:com);
let root_port = a_get_src_port(rootwrap ,root_packed_src_port) in
let resolverchan2 = chanbuilder(root_ip ,root_port ,ip_res ,RES_PORT) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let resolverchan3 = chanbuilder(ip_res ,port_res ,client_ip ,CLIENT_PORT) in
in(c, client_packed_src_port:com);
let client_port = c_get_src_port(clientwrap ,client_packed_src_port) in
let resolverchan4 = chanbuilder(client_ip , client_port ,ip_res ,RES_PORT) in
event UsedDomainServer(ip_res ,get_root_ip(rootwrap));
(
((* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_ip(ip_res);
out(c,resolverchan);
out(c,resolverchan2);
out(c,resolverchan3);
out(c,resolverchan4))

|
((* Corrupted AS -> all IPs located in this AS are leaked -> *)
(* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_as(AS);
event C_ip(ip_res);
out(c,resolverchan);
out(c,resolverchan2);
out(c,resolverchan3);
out(c,resolverchan4))
|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter1:as);
let as_root = get_root_as(rootwrap) in

event Routing(AS, inter1 , as_root);
event C_as(inter1);
event C_routing(ip_res ,get_root_ip(rootwrap));
out(c,resolverchan))

|
(
(* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter11:as);
let as_root1 = get_root_as(rootwrap) in

event Routing(AS, inter11 , as_root1);
event C_as(inter11);
event C_routing(ip_res ,get_root_ip(rootwrap));
out(c,resolverchan2))

|
((* get request for name resolution from client *)
in(c, req:bitstring);
let real_pack = get_req_packet(resolverchan4 , req) in

(* send request for authoritave name server to root NS *)
out(c, req_packet(resolverchan ,real_pack));
in(c,rootans:bitstring);
let root_pack = get_req_packet(resolverchan2 , rootans) in

let dnsinfo = get_ask(root_pack) in
event UsedDomainServer(ip_res ,get_dns_ip(dnsinfo));
let dns_ip = get_dns_ip(dnsinfo) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port with the NS server information by the root NS. *)
let resdnschan = chanbuilder(ip_res ,port_res ,dns_ip ,NS_PORT) in
in(c, dns_port_packet:com);
let dns_port = d_get_src_port(dnsinfo ,dns_port_packet) in
let resdnschan2 = chanbuilder(dns_ip ,dns_port ,ip_res ,RES_PORT) in
(* Send request for MX record *)
out(c, req_packet(resdnschan ,real_pack));
in(c, ans:bitstring);
let real_pack3 = get_ans_packet(resdnschan2 , ans) in

let prov_ans = get_prov_answer(real_pack3) in
if prov_ans = get_request_prov(real_pack) then
let dom_ans = get_dom_answer(real_pack3) in
event queries(client_ip ,dom_ans);
(* Send request for A record of the domain priory received *)
out(c, req_packet(resdnschan ,request_dom(dom_ans)));
in(c, ans2:bitstring);
let real_pack4 = get_ans_packet(resdnschan2 , ans2) in
if dom_ans = get_answer_dom(real_pack4) then

let answer_final = answer(real_pack ,get_answer_ip(real_pack4),get_answer_dom(
real_pack4)) in

event nDNSSEC(prov_ans);
out(c, ans_packet(resolverchan3 ,answer_final))

)
|
((* get request for name resolution from client *)

in(c, req_dnssec:bitstring);
let real_pack = get_req_packet(resolverchan4 , req_dnssec) in
(* send request for authoritave name server to root NS using the DNSSEC protocol *)

out(c, req_packet(resolverchan ,real_pack));
in(c,rootans:bitstring);
(* receive DS record from root server *)
let root_pack = get_req_packet(resolverchan2 , rootans) in

let dnssec_resp(ds_ans ,pair(root_zsk ,root_ksk),rr_sig_r ,ds,ds_sig) = root_pack in
(* get root key from the trustbase and continue to verify the message *)

get trustbase (=root_port , true_ksk_pub) in
if true_ksk_pub = root_ksk then

if verify(root_ksk , pair(root_zsk ,root_ksk), rr_sig_r)=true then
let pk_dnssec = ds_snd(ds_ans) in

if ds_ans = ds then
if verify(root_zsk , ds, ds_sig) = true then

let dnswrapper = ds_fst(ds_ans) in
let dns_ip = get_dns_ip(dnswrapper) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port with the NS server information by the root NS. *)
let resdnschan = chanbuilder(ip_res ,port_res ,dns_ip ,NS_PORT) in
in(c, dns_port_packet:com);
let dns_port = d_get_src_port(dnswrapper ,dns_port_packet) in
let resdnschan2 = chanbuilder(dns_ip ,dns_port ,ip_res ,RES_PORT) in
event UsedDomainServer(ip_res ,dns_ip);
let provreq = get_request_prov(real_pack) in
(* Send request for MX record using the DNSSEC protocol *)
out(c, req_packet(resdnschan ,dnssec_request_prov(provreq)));
in(c, ans:bitstring);
let comb_message = get_ans_packet(resdnschan2 , ans) in

(* Start to verify the MX record using the key received from the root NS*)
let dnssec_resp(MX,pair(top_zsk1 ,top_ksk1),mx_sig_t ,mx_rec ,mx_sig) =

comb_message in
let prov_resp = mx_fst(MX) in

if prov_resp = provreq then
if pk_dnssec = top_ksk1 then

if verify(top_ksk1 , pair(top_zsk1 ,top_ksk1), mx_sig_t)=true then
if mx_rec = MX then

if verify(top_zsk1 , mx_rec , mx_sig) = true then
let dom_ans = mx_snd(MX) in

event queries(client_ip ,dom_ans);
(* Send request for A record using the DNSSEC protocol *)
out(c, req_packet(resdnschan ,dnssec_request(dom_ans)));
in(c, ans2:bitstring);
let comb_message2 = get_ans_packet(resdnschan2 , ans2) in

(* Start to verify the A record using the key received from the root NS*)
let dnssec_resp(A,pair(top_zsk2 ,top_ksk2),a_sig_t ,a_rec ,a_sig) =

comb_message2 in
let dom_resp = rr_fst(A) in

if dom_resp = dom_ans then
if pk_dnssec = top_ksk2 then

if verify(top_ksk2 , pair(top_zsk2 ,top_ksk2), a_sig_t)=true then
if a_rec = A then

if verify(top_zsk2 , a_rec , a_sig) = true then
let ip_ans = rr_snd(A) in
(* Finally send the answer of the name resolution *)
(* to the client process *)
let real_pack_dnssec = answer(request(provreq),ip_ans ,dom_ans

) in
out(c, ans_packet(resolverchan3 ,real_pack_dnssec))

)
))
.

let smtp_client(prov:provider ,dom_client:dom ,ip_client:ip,AS:as) =
(* Receive public information of the Recipient MX process *)
in(c, recipient_info:provider);

(* Receive public information of the resolver process *)
in(c, resolver_info:service);
!(
(* Choose fresh source port for each session *)
new port_client:port;
out(c,port_client);
(* Send src port over trusted channel to communication partner. The previous line seems
redundant since the
adversary can gain the same knowledge as the key to the private constructor is publically
known. We keep this redundance because
the first line expresses that the port is publically known , whereas the second represents
that it is sent over a trusted channel. *)
out(c,c_communicate_src_port(client_info(prov ,AS,ip_client ,dom_client),port_client));
let recipient_prov = get_prov_valid(recipient_info) in
let resolver_ip = get_res_ip(resolver_info) in
in(c, res_packed_src_port:com);
let res_port = r_get_src_port(resolver_info ,res_packed_src_port) in
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let clientchan = chanbuilder(ip_client , port_client , resolver_ip , RES_PORT) in
let clientchan2 = chanbuilder(resolver_ip , res_port ,ip_client , CLIENT_PORT) in
(
((* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_ip(ip_client);
out(c,clientchan);
out(c,clientchan2))
|
((* Corrupted AS -> all IPs located in this AS are leaked -> *)
(* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_as(AS);
event C_ip(ip_client);
out(c,clientchan);
out(c,clientchan2))
|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter1:as);
let resolver_as1 = get_res_as(resolver_info) in

event Routing(AS, inter1 , resolver_as1);
event C_as(inter1);
event C_routing(ip_client ,resolver_ip);
out(c,clientchan))

|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter11:as);
let resolver_as2 = get_res_as(resolver_info) in

event Routing(resolver_as2 , inter11 , AS);
event C_as(inter11);
event C_routing(ip_client ,resolver_ip);
out(c,clientchan2))

|
(event queries_prov(ip_client ,recipient_prov);
event Resolver(ip_client ,resolver_ip);
(* Goal: Send mail to recipient. *)
(* Send request for domain resolution to resolver *)
out(c,req_packet(clientchan ,request(recipient_prov)));
(* Receive mailserver domain and IP from resolver *)
in(c, answeri:bitstring);

let real_pack = get_ans_packet(clientchan2 , answeri) in
let req = check_answer_req(real_pack) in

if req = request(recipient_prov) then
let IP = get_answer_ip(real_pack) in

let recipient_dom = get_answer_dom(real_pack) in
event Received(recipient_prov ,recipient_dom ,IP);
in(c, server_packed_src_port:com);
let server_port = s_get_src_port(IP,server_packed_src_port) in

(* Build private channel over the received IP, the fresh src port *)
(* and the public target port. *)
let clientchan3 = chanbuilder(ip_client ,port_client ,IP,SERVER_PORT) in
let clientchan4 = chanbuilder(IP, server_port , ip_client , CLIENT_PORT) in
(
((* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_ip(ip_client);
out(c,clientchan3);
out(c,clientchan4))
|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
event C_as(AS);
event C_ip(ip_client);
out(c,clientchan3);
out(c, clientchan4))
|
(
(* freshly choose challenge mail to send *)
new mail:bitstring;
out(c,req_packet(clientchan3 ,smtp_req(ip_client ,IP,mail)));
in(c, answer_pak:bitstring);
(* Receive acknowledgement of the receiver *)
if OK = get_ans_packet(clientchan4 ,answer_pak) then
(* Wait for adversary to send the challenge mail *)
(* If the adversary can provide the challenge , *)
(* the mail delivery is unconfidential *)
in(c, challenge:bitstring);
if challenge=mail then

event Unconf(prov , recipient_prov))
)

)))
.

let smtp_server(prov:provider ,dom_server:dom ,IP:ip,AS:as) =
(* Receive public information of the Client MX process *)
in(c, clientinfo:service);
!(
(* Choose fresh source port for each session *)
new server_port:port;
out(c, server_port);
(* Send src port over trusted channel to communication partner. The previous line seems
redundant since the
adversary can gain the same knowledge as the key to the private constructor is publically
known. We keep this redundance because
the first line expresses that the port is publically known , whereas the second represents
that it is sent over a trusted channel. *)
out(c, s_communicate_src_port(IP,server_port));
let client_ip = get_client_ip(clientinfo) in
in(c, client_port:port);
(* Build private channel over IPs , the fresh src port and the *)
(* public target port. *)
let serverchan = chanbuilder(client_ip , client_port , IP, SERVER_PORT) in
let serverchan2 = chanbuilder(IP, server_port , client_ip , CLIENT_PORT) in
(
((* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_ip(IP);
out(c,serverchan);
out(c,serverchan2))

|
((* Corrupted AS -> all IPs located in this AS are leaked -> *)
(* Corrupted IP -> Keys and Channels are leaked to the adversary *)
event C_as(AS);
event C_ip(IP);
out(c,serverchan);
out(c,serverchan2))

|
((* Adversary chooses an AS to be corrupted and chooses to route *)
(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter1:as);
let as_c1 = get_client_as(clientinfo) in
event Routing(as_c1 , inter1 , AS);
event C_as(inter1);
event C_routing(get_client_ip(clientinfo),IP);
out(c,serverchan))

|
((* Adversary chooses an AS to be corrupted and chooses to route *)

(* over this AS. This leaks the channel over this route to be leaked *)
in(c,inter2:as);
let as_c2 = get_client_as(clientinfo) in
event Routing(as_c2 , inter2 , AS);
event C_as(inter2);
event C_routing(get_client_ip(clientinfo),IP);
out(c,serverchan2))

|
((* Receive Message from the client MX *)
in(c, message:bitstring);
let real_pack = get_req_packet(serverchan , message) in

let mail = smtp_third(real_pack) in
(* acknowledge receiption of the message *)
out(c, ans_packet(serverchan2 ,OK)))

))
.

process
(

!(in(c,prov:provider);
!(

in(c, dom_c:dom);
in(c, ip_c:ip);
in(c, AS_c:as);
event isMailserver(dom_c ,prov);
event IPinAS(ip_c ,AS_c);
event A_record(ip_c ,dom_c);
out(c,client_info(prov ,AS_c ,ip_c ,dom_c));
(* *)
!(smtp_client(prov ,dom_c ,ip_c ,AS_c))
)

|
!(

in(c, dom_s:dom);
in(c, ip_s:ip);
in(c, AS_s:as);
event isMailserver(dom_s ,prov);
event IPinAS(ip_s ,AS_s);
event A_record(ip_s ,dom_s);
event Register_A(dom_s ,ip_s);
event Register_MX(prov ,dom_s);
out(c,server_info(prov ,AS_s ,ip_s ,dom_s));
out(c,register_server(dom_s ,ip_s));
out(c,register_provider(prov ,dom_s));
out(c,valid_prov(prov));
(* *)
!(smtp_server(prov ,dom_s ,ip_s ,AS_s))
)

|
!(

in(c, dom_r:dom);
in(c, ip_r:ip);
in(c, AS_r:as);
event IPinAS(ip_r ,AS_r);
event A_record(ip_r ,dom_r);
out(c,res_info(dom_r ,ip_r ,AS_r));

(* *)
!(resolver(dom_r ,ip_r ,AS_r))
)

|
!(

in(c, dom_d:dom);
in(c, ip_d:ip);
in(c, AS_d:as);
event IPinAS(ip_d ,AS_d);
event A_record(ip_d ,dom_d);
out(c,dns_info(dom_d ,ip_d ,AS_d));
(* *)
!(dns_server(dom_d ,ip_d ,AS_d))
)

|
!(

in(c, dom_root:dom);
in(c, ip_root:ip);
in(c, AS_root:as);
event IPinAS(ip_root ,AS_root);
event A_record(ip_root ,dom_root);
out(c,root_info(dom_root ,ip_root ,AS_root));
(* *)
!(root_server(dom_root ,ip_root ,AS_root))
)

)
)

	I Introduction
	II Related Work
	II-1 Risk assessment techniques
	II-2 Infrastructure analysis
	II-3 The analogy to computational soundness
	II-4 Symbolic completeness and liveness properties
	II-5 Analysis of DNSSEC

	III Background: Automated Planning
	IV Symbolic Soundness and Completeness
	IV-A Notation
	IV-B Symbolic Soundness
	IV-C Symbolic Completeness

	V Applications
	VI Background: Email Case Study
	VI-A Infrastructure attacker model
	VI-B Limitations

	VII Background: ProVerif
	VII-A Syntax
	VII-B Semantics

	VIII Case Study: Email
	VIII-A Symbolic model
	VIII-B Proof via sound process transformations
	VIII-C ProVerif Model Introduction
	VIII-D Automated verification
	VIII-E Modeling Challenges

	IX Conclusion
	Appendix
	A ProVerif queries
	A1 Initially Compromised Nodes
	A2 Attacks via Routing
	A3 Integrity of domain/MX resolution
	A4 Confidentiality

	B Lemmas
	C Full model

